
University of Trento

Department of Industrial Engineering

Masters’s Degree in Mechatronics Engineering

∼ · ∼

Academic Year 2023–2024

Leveraging Acquired Knowledge
and Invariant Representations for

Cable Manipulation

Supervisor
Prof. Matteo Saveriano
Prof. Dongheui Lee

Graduate Student
Erik Mischiatti

233242

Final examination date: November 28, 2024

2

i

The limit? Who decided that? If you have the time to fail ... you have to keep trying!
Saitama

ii

iv

Abstract

Robotic manipulation has become a cornerstone of modern automation, with applications
spanning manufacturing, logistics, and healthcare. The ability to handle complex tasks, such
as assembling or manipulating objects with diverse physical properties, is a critical requirement
for next-generation robotic systems. These tasks often involve rigid and deformable objects,
demanding a combination of precision, adaptability, and robustness from the underlying frame-
work.

This thesis addresses these challenges by presenting a robotic manipulation system designed to
autonomously perform assembly and disassembly tasks. The project builds on modular assembly
principles inspired by NIST standards and introduces an innovative trajectory learning approach
based on kinesthetic demonstration and invariant representations. These methods ensure motion
planning that is both robust and generalizable across varying scenarios.

The proposed system integrates cutting-edge hardware and software components, including a
robotic arm, ROS-based communication for seamless integration, and Behavior Trees (BTs) for
adaptive and modular task execution. Demonstration trajectories are captured, pre-processed,
and reconstructed within an invariant space to maintain precision and flexibility.

Experimental results highlight the framework’s ability to perform complex manipulation tasks
with high accuracy, even under dynamically changing conditions. By providing a robust founda-
tion for trajectory generalization and scalable system architectures, this work contributes to the
advancement of robotic autonomy and underscores the growing potential of flexible automation
solutions within the paradigm of Industry 4.0.

vi

Contents

Introduction 1

1 State of the Art 3
1.1 Introduction . 3
1.2 Perception . 3

1.2.1 Definition and Importance . 3
1.2.2 Technologies and Methods . 4
1.2.3 Critique and Gaps . 4

1.3 Planning . 5
1.3.1 Definition and Importance . 5
1.3.2 Technologies and Methods . 5
1.3.3 Critique and Gaps . 6

1.4 Execution . 6
1.4.1 Definition and Importance . 6
1.4.2 Technologies and Methods . 6
1.4.3 Critique and Gaps . 7

2 Theoretical Foundations 9
2.1 Introduction . 9
2.2 Perception . 9

2.2.1 Learning from Demonstration . 10
2.2.2 Feature Extraction . 13
2.2.3 Color and Shape Detection for Cable Connector Identification 15

2.3 Planning . 17
2.3.1 Dynamic Movement Primitives (DMP) . 18
2.3.2 Bidirectional Invariant Representation . 22
2.3.3 Trajectory and Orientation Generalization 25

2.4 Execution . 26
2.4.1 Behavior Trees . 26

3 Materials and Equipment 29
3.1 Introduction . 29
3.2 Custom Assembly Board for Robotic Manipulation 29

3.2.1 Inventory of Experimental Equipment and Materials 30
3.3 Hardware Equipment . 32

3.3.1 Robotic Arm (Franka Emika Panda) . 32
3.3.2 Camera (Intel RealSense D435i) . 32

3.4 Software Tools . 33

vii

CONTENTS

3.4.1 ROS (Robot Operating System) . 33
3.4.2 Aruco Libraries . 33
3.4.3 Other Software Tools . 33

4 System Design and Development 35
4.1 Introduction . 35
4.2 System Requirements and Design Goals . 35

4.2.1 Functional Requirements . 35
4.2.2 Design Goals . 36
4.2.3 Constraints . 37

4.3 Integration of Hardware Components . 38
4.3.1 Integration of the Robotic Arm and Sensors 38
4.3.2 RealSense and Aruco Synchronization . 38
4.3.3 Custom Assembly Board and Object Manipulation 39
4.3.4 Challenges in Hardware Integration . 39

4.4 Software Architecture and Communication . 40
4.4.1 ROS Node Management . 40

5 Experimental Method 43
5.1 Introduction . 43
5.2 Experimental Setup . 43

5.2.1 Configuration of the Environment . 43
5.2.2 Test Scenarios . 44

5.3 Experimental Procedure . 46
5.3.1 Preparation Phase . 46
5.3.2 Trajectory Recording and Processing Phase 47
5.3.3 Execution Phase . 48
5.3.4 Post-Experiment Analysis . 49

5.4 Results and Observations . 49
5.4.1 Validation of Individual Modules . 49
5.4.2 Framework Performance in Task Execution 52

Conclusions 55

A 3D-Printed Tools for the Custom Assembly Board 57

B ROS Node Graph 59

Bibliography 63

List of Figures 65

List of Tables 67

viii

Introduction

Modern industry increasingly relies on advanced robotics to optimize production processes, re-
duce costs, and improve safety and efficiency. The shift towards digitalization and automation
has propelled innovation to new levels of human-machine interaction, where direct collaboration
between human operators and robotic systems is crucial for achieving complex objectives. Cur-
rent examples of this interaction include collaborative production in automotive factories, where
human operators and robots work together to assemble complex components, and in the food
industry, where robotic systems assist in selecting and packaging products while maintaining
high hygiene standards.

This convergence of advanced technology and human labor also extends to other sectors
such as logistics and hospitality, where autonomous mobile robots (AMRs) enhance efficiency
and reduce operational costs by automating processes like food and beverage transportation or
material handling without direct contact. These innovations not only optimize current operations
but also pave the way for new applications of collaborative robotics (cobots) in processes requiring
delicate and adaptable interactions, such as material assembly and complex component handling.

This evolution highlights a growing trend towards the use of robotic systems in configura-
tions that require greater flexibility and adaptability. Consequently, recent developments in the
manipulation of Deformable Linear Objects (DLOs) further illustrate how automation can be
significantly enhanced through the integration of sensory feedback and predictive models. This
allows robotic systems to dynamically adapt to operational complexities in industrial scenarios
such as the production of switchgear and wiring, demonstrating a transformative impact on the
effectiveness of robotic operations [5].

In this evolving context, the robotic manipulation of DLOs such as cables, ropes, and tubes
presents significant challenges due to their inherently unpredictable nature and complex non-
linear dynamics. Recent innovations in differentiable dynamic models for shape control of these
objects have opened new frontiers in robotic trajectory programming, allowing for precise manip-
ulations with minimal human intervention. Additionally, recent research has developed advanced
models for estimating and tracking the 3D shape of DLOs from multiple 2D views, significantly
improving robots’ manipulation capabilities in industrial environments [6] [18] [10] [12] [37] [23].

Assembly and disassembly scenarios, where DLOs are employed, require precision in inserting
flexible cables into tight spaces and careful management to avoid damage. These processes, which
represent critical areas in industrial automation, benefit significantly from advanced detection
and physical interaction capabilities, as demonstrated by technologies that allow robots to per-
ceive and manipulate with increased precision [19], furthermore, innovations such as the real-time
estimation of model parameters for DLO manipulation highlight how automation can dynami-
cally adapt to operational needs, enabling more effective and efficient resource management in
production contexts [8] [16].

The problem of production and assembly of wiring, still largely dependent on human labor,
highlights the need for innovative robotic solutions capable of manipulating deformable objects

1

INTRODUCTION

with precision, especially in environments characterized by tight spaces and numerous obstacles
[4]. The research by Bostelman and Falco provides a detailed analysis of industrial manipulation
technologies that facilitate autonomous assembly tasks, underscoring the importance of these
developments for modern industry [5].

Incorporating these developments, research continues to push the boundaries of robotic tech-
nology, making machines increasingly capable of tackling tasks that were once considered too
difficult or impossible for automation. For example, the semi-automatic approach to image mark-
ing for DLOs proposed by Caporali et al. shows how artificial intelligence can reduce human
workload and improve the accuracy of robotic operations [7]. These advancements not only
enhance the effectiveness of DLO manipulation but also demonstrate how automation can be
significantly boosted through the integration of sensory feedback and predictive models, allow-
ing robotic systems to dynamically adapt to operational complexities in industrial scenarios such
as switchgear and wiring production.

This thesis aims to address these challenges by developing a robotic manipulation system
capable of autonomously handling rigid and deformable objects. Leveraging advanced tech-
niques such as kinesthetic demonstration, invariant representations, and Behavior Trees, this
work contributes to the growing field of adaptive robotics, with a particular focus on industrial
applications requiring precision and flexibility.

2

Chapter 1

State of the Art

1.1 Introduction

The ”State of the Art” chapter aims to provide an overview of the current knowledge on the
research topic, analyzing contributions from the literature and identifying both existing solutions
and gaps that need to be addressed. The analysis focuses on similar or related works, with the
goal of highlighting approaches, methods, and technologies relevant to the context of the thesis.

The chapter is structured into three main areas:

• Perception, which analyzes technologies and methods for environmental perception, in-
cluding sensors and algorithms for object reconstruction and recognition.

• Planning, which focuses on techniques for task planning and optimization, particularly
for robotic manipulation in dynamic environments.

• Execution, which focuses on methods for executing robotic tasks, from motion planning
to control.

This structure, which will be revisited later in Chapter 2, allows for the identification of
not only established knowledge but also open research areas, providing the necessary context to
justify and position the contributions of the thesis.

1.2 Perception

1.2.1 Definition and Importance

“Perception is analyzing the sensing data that the robot gets, and outputting useful information
for downstream tasks.”

This topic represent a fundamental component in robotic systems and the first step in our
project, enabling them to acquire and interpret information about their surroundings. Through
data obtained from vision devices or technologies that mimic other types of ”senses,” robots can
identify objects, analyze their physical properties, and estimate their position and orientation.
This process is particularly critical for manipulating complex objects, such as Deformable Linear

3

CHAPTER 1. STATE OF THE ART

Objects. Manipulating these objects presents unique challenges, as their deformable nature and
interactions with the environment require precise and robust perception to ensure operational
success.

1.2.2 Technologies and Methods

Regarding deformable objects, perception technologies primarily rely on visual sensors such as
RGB, RGB-D, and stereo cameras, often combined with advanced algorithms for segmentation,
shape estimation, and tracking. RGB-D cameras, for instance, provide a three-dimensional repre-
sentation of the scene, essential for geometric reconstruction tasks [6]. However, more economical
and flexible configurations, such as 2D cameras in an eye-in-hand setup, are often preferred in
industrial scenarios due to their simplicity of implementation and lower cost [16]. Additionally,
stereo cameras and LIDAR are applied in situations requiring more accurate reconstruction of
the shape and position of complex objects [23].

In the context of this project, a combined approach leveraging color and shape detection was
implemented to identify the connector of a cable and estimate its position and orientation in
3D space. Using an RGB-D camera, the system segments the object based on color thresholds
in the HSV color space and combines this information with depth data to calculate 3D coor-
dinates of key points, that in our case is on the connector of the cable. This method ensures
accurate detection even in cluttered environments, where traditional algorithms may struggle
with occlusions or overlapping features. Additionally, advanced processing techniques, includ-
ing exponential smoothing, are applied to stabilize the detected coordinates and mitigate noise
in the depth data. The detected 3D axis of the connector is then visualized in real-time and
used as input for downstream manipulation tasks. This approach highlights the effectiveness of
combining geometric and color-based techniques to enhance perception capabilities in robotic
systems.

From an algorithmic perspective, innovative approaches such as RT-DLO propose using
graph-based representations to model DLOs [9]. These algorithms combine binary masks, gen-
erated through convolutional neural networks, with graph analysis that segments and represents
DLOs in terms of nodes and edges. This allows for successfully managing complex intersec-
tions and generating skeletal representations ready for manipulation. Similarly, algorithms like
mBEST utilize energy-minimization techniques to produce topologically accurate representations
of DLOs, improving segmentation robustness in challenging environments [12][19].

For applications requiring dynamic manipulations, advanced models like the Discrete Elastic
Rod Model (DER) incorporate deformations such as curvature, torsion, and stretching to accu-
rately describe the physical behavior of DLOs [23]. Other approaches, such as the RT-Cable
framework, adopt spatial representations that reduce dependency on absolute positions, focus-
ing instead on the relative relationships between the cable and surrounding objects [18]. This
strategy significantly simplifies the planning and execution of complex tasks like cable routing.

A key aspect of successful perception algorithms is the availability of high-quality datasets.
Using synthetic data, generated through photorealistic simulations, has proven effective for train-
ing deep learning models, significantly reducing the costs of manual labeling [8]. However, to
improve generalization to real-world scenarios, many approaches combine synthetic data with
online adaptation techniques, updating the models during manipulation operations [6][38].

1.2.3 Critique and Gaps

Despite significant progress, several open challenges remain in the field of DLO perception.
Generalization remains one of the main issues: models trained on synthetic data often struggle in

4

1.3. PLANNING

real-world scenarios, particularly when dealing with objects with physical properties that differ
significantly from those simulated [8][38]. Additionally, robustness in dynamic and complex
environments represents a barrier to large-scale industrial adoption. While algorithms such as
RT-DLO and mBEST have improved the handling of intersections and topologically complex
configurations [9][12], their performance may degrade in the presence of significant occlusions or
rapid variations in environmental conditions.

Another limitation concerns the integration of additional sensors, such as tactile ones, which
could provide complementary information to improve manipulation accuracy. Currently, most
approaches rely exclusively on visual data, overlooking the potential of multi-sensory feedback.
Finally, computational scalability remains a challenge for real-time applications involving many
DLOs or particularly complex scenes.

1.3 Planning

1.3.1 Definition and Importance

The ability to plan and adapt is central to the functionality of robotic systems, enabling the
reconstruction and execution of trajectories while ensuring precision and flexibility. This process
involves leveraging techniques such as trajectory generalization, as well as advanced algorithms
like Dynamic Movement Primitives (DMP) and the DHB-based invariant representation. These
methodologies allow for the encoding and adaptation of motions to new contexts while preserving
the essential characteristics of the original trajectories. In this thesis, planning is not just about
achieving motion efficiency but also about ensuring robust and reliable task execution through
the use of invariant-based frameworks.

1.3.2 Technologies and Methods

Invariant trajectory representations are becoming essential tools in robotic planning, especially
for generalizing and recognizing demonstrated movements. Among the latest approaches, several
innovative methodologies stand out:

Dynamic Movement Primitives (DMPs). DMPs represent one of the foundational frame-
works for trajectory planning. They allow the encoding of complex movements as nonlinear
dynamical systems, ensuring robustness and adaptability. Their key features include scalability,
temporal invariance, and the ability to learn from demonstrations [1]. Recent advancements,
such as the introduction of reversibility, have expanded their applicability, enabling bidirectional
trajectory execution for tasks like assembly and disassembly [28]. Furthermore, the integra-
tion of coupling terms enables real-time adjustments to avoid obstacles or modify trajectories
dynamically [22].

DHB Model (Denavit-Hartenberg Bi-directional). A Denavit-Hartenberg-inspired ap-
proach proposes a bidirectional representation to describe motion trajectories compactly and
invariantly [20] [21]. This method decomposes trajectories into invariant components, enabling
both recognition and accurate reproduction of movements. Key properties include:

• Modularity and Robustness: DHB representations separate position and orientation,
simplifying integration into articulated systems.

• Adaptability: The ability to handle transformations such as scaling, rotation, and trans-
lation allows for greater generalization in dynamic scenarios.

5

CHAPTER 1. STATE OF THE ART

This framework has proven particularly useful for complex manipulation tasks, such as rec-
ognizing and reproducing human motions in human-robot interaction contexts.

Invariant Trajectory Representations. Methods based on invariant representations, such
as those introduced in [31], leverage spatio-temporal curvature to segment and analyze trajec-
tories. These approaches offer robustness to viewpoint changes and transformations, making
them ideal for recognizing and reproducing actions. In demonstration and knowledge transfer
contexts, such representations simplify the process of mapping human movements to robotic
systems, ensuring precision and adaptability.

Trajectory Optimization. A robust optimization-based approach has been developed to
compute invariant trajectory representations, reducing noise and managing singularities. This
method uses optimal control constraints to generate reliable trajectories even in noisy or dy-
namic scenarios [35]. Practical applications include adaptive motion planning and human intent
recognition, where invariant descriptors facilitate transferring demonstrated tasks to new envi-
ronments with minimal recalibration.

Reversible Task Execution. An additional advancement is the integration of logistic differ-
ential equations into DMPs to enable reversible trajectory execution [22]. This approach has
proven particularly effective in assembly tasks like ”peg-in-hole,” where reversibility facilitates
error recovery by allowing the robot to return to previous states [11].

1.3.3 Critique and Gaps

Despite significant progress, some open challenges remain in robotic planning:

• Computational Complexity: Processing invariant representations or optimizing trajec-
tories in real-time can be demanding in highly dynamic environments.

• Reliability in Noisy Environments: Dependence on precise sensory data may introduce
errors in unstructured scenarios or when sensors are affected by noise.

• Applicability to Deformable Objects: While many methods are optimized for rigid
objects, there are limitations in generalizing to deformable objects or multi-contact manip-
ulation.

1.4 Execution

1.4.1 Definition and Importance

Execution in robotic systems refers to the real-time implementation of planned actions, including
trajectory control, motion coordination, and interaction with the environment. It represents the
final stage of robotic operations, where abstract plans are transformed into precise physical
actions. Execution is critical for ensuring task success, particularly in dynamic environments
where external disturbances and uncertainties must be addressed.

1.4.2 Technologies and Methods

The effective execution of robotic tasks relies on a combination of advanced control strategies, sen-
sor integration, and high-level decision-making frameworks. Several methodological approaches
have been explored to meet these requirements:

6

1.4. EXECUTION

Behavior Trees (BTs). Behavior Trees (BTs) are hierarchical frameworks that enable mod-
ular, scalable, and reusable execution of robotic tasks. BTs combine decision-making and action
execution in a tree structure, where each node represents a behavior or a condition [13] [24]. This
topic will be discussed in greater detail in the following chapters, as it is the approach adopted
for the project.

Force and Impedance Control. Force-based methods, including impedance and admittance
control, are fundamental for ensuring safe and effective interaction between robots and their
environment. Variable impedance control, for instance, allows robots to dynamically adjust their
stiffness or compliance depending on the task requirements [3]. These methods are particularly
useful for tasks involving physical interactions, such as assembly or manipulation of deformable
objects.

Sensor Integration and Feedback. Robotic execution increasingly relies on multi-sensory
feedback to improve precision and robustness. For instance:

• Tactile Sensing: Provides detailed information about contact forces, enabling delicate
object manipulation [15].

• Visual Servoing: Guides robotic actions using real-time visual data, ensuring accuracy
in tasks such as pick-and-place operations [17].

The combination of tactile and visual feedback is particularly important for managing uncer-
tainties in dynamic environments.

Model Predictive Control (MPC). Model Predictive Control (MPC) has emerged as a
powerful tool for robotic execution, offering real-time optimization of control inputs based on
future state predictions. This approach is particularly suited for dynamic tasks that require
simultaneous consideration of constraints, such as collision avoidance and energy efficiency [26].

Optimized Trajectories. Optimized trajectories represent a key aspect of execution, espe-
cially when calculated in real-time during a task. Optimization techniques, such as those applied
in Model Predictive Control, allow continuous adjustment of trajectories to adapt to dynamic
conditions and physical constraints [35]. This approach integrates with advanced control to
ensure precision and efficiency.

1.4.3 Critique and Gaps

Despite significant progress, several challenges remain in the execution of robotic tasks:

• Scalability in Complex Environments: Real-time execution frameworks, such as BTs
and MPC, can become computationally intensive in scenarios with high-dimensional state
spaces.

• Robustness to Noise: Sensory noise and environmental uncertainties can degrade the
performance of control algorithms, particularly in unstructured settings.

• Integration of Advanced Sensors: While multi-sensory feedback enhances precision, it
also increases system complexity and requires advanced data fusion techniques.

7

CHAPTER 1. STATE OF THE ART

8

Chapter 2

Theoretical Foundations

2.1 Introduction

Robots are becoming increasingly essential in a variety of fields, from industrial automation to
service applications. To operate effectively in dynamic and unstructured environments, they
must be capable of perceiving their surroundings, planning appropriate actions, and executing
these actions reliably. Achieving this level of autonomy requires a systematic integration of
perception, planning, and execution, with each component playing a crucial role in enabling
robots to perform complex tasks.

This chapter provides a comprehensive exploration of these three pillars of robotics. The Per-
ception section focuses on enabling robots to observe and interpret their environment, particularly
through Learning from Demonstration (LfD). By learning directly from human demonstrations,
robots can acquire new skills and behaviors without the need for extensive manual programming.
This capability is critical for adapting to diverse and evolving tasks.

The Planning section introduces techniques for transforming the data gathered through per-
ception into actionable plans. It highlights the use of Dynamic Movement Primitives (DMPs)
for encoding and generalizing trajectories, and the Denavit-Hartenberg inspired Bidirectional
Representation (DHB) for robust motion description and reconstruction. Together, these meth-
ods ensure that robots can plan actions that are both flexible and precise, even in dynamic
environments.

Finally, the Execution section delves into the implementation of action plans using Behavior
Trees (BTs). These provide a modular and hierarchical framework for real-time decision-making
and action control, enabling robots to respond dynamically to changes in their environment while
ensuring scalability and robustness.

By integrating these components, this chapter lays the foundation for designing robotic sys-
tems capable of seamless interaction with their environment and performing complex tasks with
autonomy and reliability.

2.2 Perception

The primary goal of Perception is to enable robots to observe and interpret the environment
and the actions demonstrated by a human operator. This chapter focuses on the paradigm of
Learning from Demonstration (LfD), an approach that allows robots to acquire complex behaviors
through the observation of human demonstrations, eliminating the need for explicit programming.

9

CHAPTER 2. THEORETICAL FOUNDATIONS

Figure 2.1:

Figure 2.2: The three main phases in imitation

Additionally, it explores the integration of sensory data with advanced processing techniques to
facilitate object recognition and localization, essential for downstream manipulation tasks.

2.2.1 Learning from Demonstration

“Imitation is defined as the process by which an agent learns a behavior by observing the
execution of that behavior by a teacher.” [2]

Learning by Imitation, also known as Learning from Demonstration (LfD), involves
recognizing demonstrated actions, encoding them in a meaningful format, and autonomously
reproducing them. LfD is valuable as it allows robots to acquire complex behaviors without
extensive manual programming, facilitating quicker adaptation to new tasks and environments.

In robotics, LfD enables robots to autonomously replicate human actions, effectively reduc-
ing the time and complexity required to teach robots, especially in industrial assembly, where
flexibility and precision are critical. Through observing human demonstrations, robots can gen-
eralize the behaviors learned, applying them to various situations with a level of adaptability
that traditional programming often lacks.

LfD has become a powerful tool for tasks such as robotic assembly, where robots have tradi-
tionally been programmed to follow predefined trajectories for specific tasks like peg insertion,
bolt screwing, or component assembly. Rather than requiring rigid programming for each task,
robots can now learn directly from demonstrations, adapting fluidly to changes in the envi-
ronment or task requirements. By observing, encoding, and reproducing actions, robots can
autonomously execute tasks, integrating learned behaviors with their physical capabilities and
adapting them to current operating conditions.

10

2.2. PERCEPTION

Demonstration Ease of demonstration High DOFs Ease of mapping
Kinesthetic Teaching ✓ ✓
Teleoperation ✓ ✓
Passive Observation ✓ ✓
Motion-Sensor Demonstration ✓ ✓

Table 2.1: Comparison of learning-from-demonstration methods

Robotic Assembly

LfD allows robots to acquire complex behaviors through observation, removing the need for ex-
plicit programming. In robotic assembly, LfD has proven to be an efficient method for enabling
robots to perform tasks such as peg-in-hole insertions, bolt screwing, and component assem-
bly without extensive reprogramming. Traditionally, assembly line robots were programmed
to follow predefined trajectories, but with LfD, they can learn these behaviors directly from
demonstrations, providing greater adaptability and faster setup times [39].

Key Concepts in Learning from Demonstration

The process of learning from demonstration involves three fundamental stages: Observation,
Encoding or representation, and Execution or reproduction. During the observation phase,
the robot records and analyzes the actions demonstrated by the teacher, including the task’s
context and objectives. In the representation phase, these actions are converted into an internal
model that the robot can use to autonomously execute the task. Finally, in the reproduction
phase, the robot replicates the observed behavior, adapting it to its physical capabilities and the
specific conditions of its environment [2].

Demonstration Approach

There are several methods by which demonstrations can be provided to a robot. In many
cases, the robot can be guided through a task physically or via teleoperation, where an operator
remotely controls the robot while it learns the desired behaviors. Demonstrations can also be
captured through motion sensors or motion-capture systems, which are then translated into
robotic actions.

Table 2.1 provides a summary of the main similarities and distinctions between these ap-
proaches, focusing on the ease of demonstration, capacity to manage a high number of degrees
of freedom, and the simplicity of mapping the demonstrations onto the robot’s configuration or
operational space. In the following sections, each demonstration method is examined in detail.
[39] [32]

Kinesthetic Demonstration Kinesthetic Demonstration is one of the most effective methods
for teaching robots new tasks. In this Learning from Demonstration (LfD) approach, a human
instructor physically guides the robot through the required motions. During this process, the
robot’s actuators are placed in a passive mode, allowing the demonstrator to manipulate its
joints directly. The robot records both the trajectory and the forces applied throughout the task,
creating a set of training data that it can later use to autonomously reproduce the action. This
approach is particularly beneficial for complex assembly tasks, such as peg-in-hole operations,
where precision and adaptability are essential.

Kinesthetic teaching is widely used with robotic manipulators, including lightweight indus-
trial robots, due to its intuitive nature and minimal training requirements for users. This method

11

CHAPTER 2. THEORETICAL FOUNDATIONS

relies solely on the robot’s onboard hardware and does not require external sensors, interfaces,
or additional inputs. Recording demonstrations directly on the robot also eliminates the corre-
spondence problem, simplifying the machine-learning process and enabling the robot to focus on
accurate motion reproduction.

A key advantage of kinesthetic teaching is its hands-on approach, which allows the demon-
strator to gain an intuitive sense of the robot’s physical limitations within its environment. This
direct interaction with the robot is often more immersive than using simulated or virtual demon-
strations. Furthermore, proprioceptive feedback from motor encoders allows the robot to ”sense”
its own motion by registering joint-angle data at each degree of freedom.

Despite its effectiveness, kinesthetic teaching has several limitations. The quality of the
demonstration can depend on the dexterity and smoothness of the human user; even with skilled
demonstrators, the recorded data often require post-processing, such as smoothing, to ensure
consistency. Additionally, kinesthetic teaching is primarily applicable to robotic manipulators, as
these robots have an intuitive form factor that facilitates physical guidance. On other platforms,
such as legged robots or robotic hands, kinesthetic demonstration may be challenging or less
effective.

In certain implementations, the demonstrator can control aspects of the task execution, such
as starting and stopping the recording, through tools like buttons on the robot’s cuff. This setup
enables the recording of specific manipulation primitives—characterized by start and end poses
and action sequences—creating modular components that can be processed using frameworks
like Dynamic Movement Primitives (DMPs) to form a structured model of the learned task.

Teleoperation Teleoperation is a versatile method in LfD where a human operator remotely
controls a robot to perform tasks, typically using a control device or interface to guide the robot’s
actions. During teleoperated demonstrations, the robot records data from its own sensors, cap-
turing movements directly on the robot to ensure precise mapping without needing intermediate
transformations. This approach enables the robot to learn complex tasks efficiently by observing
human input in real-time.

The teleoperation process can be executed with various input devices, including control boxes,
haptic interfaces, and virtual-reality systems, which allow for remote interaction with the robot.
Unlike kinesthetic demonstrations, teleoperation does not require the user to be physically near
the robot, making it suitable for remote settings and opening opportunities for crowdsourced
data collection from multiple demonstrators.

Teleoperation has been applied in a range of applications, such as:

• Assembly tasks: The robot mirrors the human’s assembly motions, tracking pose informa-
tion in real-time to replicate the demonstrated movements precisely.

• Collaborative tasks: Teleoperation is useful for tasks that require both dynamic and com-
municative input, enabling the robot to perform spatial positioning, grasp preshapes, and
pick-and-move operations.

• Humanoid and complex robotic control: Systems like NASA’s Robonaut use full-immersion
teleoperation, allowing the robot to transmit visual and auditory data to a human operator
wearing a helmet for sensory feedback. Although this offers high fidelity control, it can be
challenging due to the intensity and precision required from the operator.

One unique aspect of teleoperation is the ability to deliver ”hints” to the robot. Operators
may provide guidance by repeating tasks or highlighting key aspects of a skill. For example,
operators can use vocal cues or gestures to emphasize elements within a task, accelerating the

12

2.2. PERCEPTION

robot’s learning process. Studies have shown that integrating vocal cues into the robot’s weight
functions can enhance feature relevance, aiding in segmentation and manipulation tasks.

In addition to direct control, teleoperation in LfD includes understanding the human demon-
strator’s intent. By analyzing vocal tone or body language, robots can learn to interpret the
affective intent behind commands, going beyond literal task replication to capture goal-oriented
behavior. This understanding enhances the robot’s ability to recognize the objectives behind
demonstrated tasks, paving the way for social and cognitive learning, where robots understand
human intentions and even imperfectly demonstrated examples.

Despite its advantages, teleoperation has some limitations, such as the additional training
required for operators to use specific input devices effectively, and the availability of the necessary
hardware.

Passive Observation Passive Observation is a demonstration approach where the robot learns
by observing the human perform a task without any direct interaction. In this method, the
demonstrator executes the task using their own body, sometimes with the assistance of ad-
ditional sensors to facilitate tracking. The robot remains a passive observer throughout the
process, recording movements for later analysis and imitation. This approach, often referred to
as imitation learning, is particularly simple for the human demonstrator as it requires minimal
training.

Passive Observation is especially suited to robots with many degrees of freedom or no-
anthropomorphic robots, where kinesthetic teaching would be challenging. However, this ap-
proach introduces technical challenges, such as the need to translate human movements into
actions executable by the robot and handling issues like occlusions, rapid movement, and sensor
noise. Despite these challenges, Passive Observation has been successfully applied in a variety of
tasks, including collaborative furniture assembly, autonomous driving, table-top tasks, and knot
tying.

Motion-Sensor Demonstration Motion-Sensor Demonstration is a method where the com-
plex limb movements of a human demonstrator are captured using advanced tracking devices,
such as optical or magnetic markers, gloves with LEDs and tactile sensors, or motion sensors.
This approach allows for higher precision than computer vision, reducing issues like visual over-
lap and improving data accuracy. It relies on marker-based tracking to capture fine movements
for complex tasks, such as robotic assembly.

In Motion-Sensor Demonstration, tracking devices capture position and orientation data to
record full-body or limb-specific movements. For example, a glove with LEDs can monitor wrist
orientation, while tactile sensors identify contact points with objects. This method is particularly
effective for segmenting complex motion patterns into discrete or continuous actions, which
is useful for tasks like peg-in-hole assembly and tasks requiring force control. Motion-Sensor
Demonstration often involves manual segmentation and labeling to provide reference data for
the robot’s learning process.

2.2.2 Feature Extraction

Once a demonstration is provided, it is crucial for the robot to extract relevant features from the
observed behavior. Feature extraction enables the robot to generalize the demonstrated behavior
to different contexts or goals, providing greater flexibility in task execution. [39] [32] [34] [29]

13

CHAPTER 2. THEORETICAL FOUNDATIONS

Dynamic Movement Primitives (DMP)

Dynamic Movement Primitives (DMPs) are a key concept in Learning from Demonstration.
DMPs offer a framework for encoding demonstrated behaviors into reusable movement patterns,
which can be adapted to different start and goal positions. They provide a flexible way to model
complex trajectories by decomposing the task dynamics into attractor systems that guide the
robot’s motion. This section offers a brief introduction to DMPs, with a more detailed discussion
provided in a dedicated chapter later in this thesis.

Denavit-Hartenberg inspired Bidirectional Representation (DHB)

The Denavit-Hartenberg inspired Bidirectional Representation (DHB) is a foundational approach
in Learning from Demonstration for describing and reproducing rigid body motions in an invari-
ant and bidirectional manner. DHB offers a compact and robust representation that can adapt to
various spatial configurations, maintaining invariances in properties such as rotation, translation,
linear and angular scaling, and temporal variations. These attributes make DHB particularly
suitable for recognizing and generating trajectories, even in complex and variable scenarios.

The bidirectional nature of the DHB representation allows for seamless conversion of trajec-
tories between Cartesian and invariant spaces, ensuring accuracy in reconstructing the original
trajectory and enabling robots to adapt flexibly to different interaction scenarios. Unlike other
unidirectional representations or those requiring higher-order derivatives, DHB ensures numerical
robustness and reduces sensitivity to noise, proving ideal for human-robot interaction applica-
tions in realistic environments. This section introduces the principles of DHB, with a more
detailed discussion provided in a dedicated chapter later in this thesis.

Hidden Markov Models (HMMs)

Hidden Markov Models (HMMs) are probabilistic models widely used in Learning from Demon-
stration to encode and generalize demonstrated trajectories. An HMM is a statistical model
used to describe a Markov process with unobserved (hidden) states, and it can be considered the
simplest form of a dynamic Bayesian network. In the HMM framework, the observable outputs
depend on the hidden states, which themselves are characterized by probabilities that define
transitions between states. This structure allows HMMs to manage temporal sequences and spa-
tial variables through a probabilistic approach, making it robust for segmenting and recognizing
movement patterns in robotic tasks.

HMMs are particularly useful in modeling trajectories where human demonstrations consist
of sequences of positions and velocities, represented as a continuous HMM with states encoded by
Gaussian Mixture Regression (GMR). Each Gaussian distribution within the HMM is associated
with a center and covariance matrix based on positional and velocity data, and these distributions
are weighted to capture spatial and sequential information effectively. This approach allows
HMMs to encapsulate both spatial and temporal variability, making them suitable for modeling
complex motion patterns observed in demonstrations.

To improve stability in motion reproduction, several extensions to the standard HMM have
been developed. Some approaches incorporate additional control mechanisms to ensure precise
tracking of nonlinear dynamic movements, allowing robots to closely follow learned trajecto-
ries. Other adaptations focus on extracting and segmenting motion sequences from recorded
trajectories, effectively modeling variability across spatial and temporal dimensions. These en-
hancements make HMMs versatile tools, as they can not only recognize specific motion patterns
but also generate new motions based on previously learned behaviors, functioning as generative
models.

14

2.2. PERCEPTION

Gaussian Mixture Models (GMM) and Gaussian Mixture Regression (GMR)

Gaussian Mixture Models (GMMs) are probabilistic models used for clustering and density es-
timation, making them valuable tools in Learning from Demonstration for representing and
generalizing demonstrated movements. A GMM is composed of two main categories of parame-
ters: mixture component weights, which define the proportion of each Gaussian distribution in
the model, and component means and variances (or covariances), which characterize the shape
and position of each Gaussian component in the data space. One advantage of GMMs is that
they do not require prior knowledge about the classification of data points, allowing the model
to automatically learn the underlying structure in a dataset.

In robotic applications, GMMs are effective for motion modeling due to their robustness to
noise. However, in high-dimensional spaces or when data samples are noisy or limited, GMMs
with full covariance matrices can be prone to overfitting, where the model becomes too closely
aligned with the sample data and loses generalizability. To address this, a technique called semi-
tied GMM is often used. This approach decomposes the covariance into a common latent feature
matrix and a component-specific diagonal matrix, forcing the mixture components to align along
a set of common coordination patterns. These patterns can then be reused across different parts
of the skill-learning process, enhancing the model’s robustness and adaptability.

Combined with Gaussian Mixture Regression (GMR), GMMs allow robots to predict plausible
trajectories based on the statistical properties of the demonstrated data, adapting movements
to different initial and goal conditions. This combination of GMM and GMR is particularly
advantageous for tasks that require flexibility and real-time adaptability, as it enables robots to
generalize learned movements efficiently.

2.2.3 Color and Shape Detection for Cable Connector Identification

One of the core challenges in robotic manipulation tasks is accurately identifying and localizing
objects within complex and dynamic environments. In the context of this project, a customized
perception system was developed to detect the cable connector based on its color and shape,
allowing for precise estimation of its position and orientation in 3D space. This process combines
color segmentation, depth analysis, and axis detection using advanced computer vision techniques
and real-time processing pipelines.

As shown in Algorithm 1, the ImageDepthProcessor pipeline integrates multiple stages, in-
cluding HSV-based segmentation, ArUco marker detection, and pose estimation. This approach
ensures robust and real-time perception capabilities for detecting cable connectors and their 3D
orientation.

Color Segmentation and Depth Analysis

The detection process begins with color segmentation, which isolates the connector region from
the scene. The approach leverages the HSV (Hue, Saturation, Value) color space for robust color-
based filtering. This is particularly advantageous over RGB for this task due to its resilience to
variations in lighting conditions. The following steps outline the segmentation process:

1. HSV Thresholding: The system applies predefined lower and upper bounds to segment
pixels matching the connector’s color. These bounds are dynamically adjustable through
a real-time trackbar interface, allowing for fine-tuning during calibration.

Maskconnector = cv2.inRange(HSV Image,Lower Bound,Upper Bound)

15

CHAPTER 2. THEORETICAL FOUNDATIONS

2. Contour Extraction: Using the binary mask obtained from the thresholding step, con-
tours are extracted to identify candidate regions corresponding to the connector. The
largest detected contour is considered the primary region of interest.

3. Depth Mapping: The pixel coordinates of the segmented connector are projected into
3D space using depth data from the RGB-D camera. The depth value at each pixel is
deprojected into Cartesian coordinates based on the intrinsic parameters of the camera:XY

Z

 =

(u− cx) · Z/fx
(v − cy) · Z/fy

Z


where (u, v) are the pixel coordinates, Z is the depth value, and fx, fy, cx, cy are the intrinsic
parameters.

Connector Axis Detection and Orientation Estimation

Once the connector region is localized in 3D space, its orientation is determined by estimating
its principal axis. This process is critical for guiding downstream manipulation tasks:

1. 3D Axis Detection: The system identifies the two most significant points (e.g., end
caps) on the connector using 3D geometry, forming a virtual axis. This axis provides an
orientation reference in the workspace.

2. Angle Calculation: The angle of rotation about the base frame is computed using the
vector formed by the detected axis. The angle θ in the XY plane is determined as:

θ = arctan 2(∆Y,∆X)

where ∆X and ∆Y are the differences in the X and Y coordinates of the two end points.

3. Smoothing for Stability: To enhance robustness against noise, an exponential smoothing
filter is applied to both position and orientation data:

St = α ·Xt + (1− α) · St−1

where α is the smoothing coefficient, Xt is the current value, and St−1 is the smoothed
value from the previous iteration.

Real-Time Visualization and Integration

To facilitate debugging and provide feedback during operation, the system includes real-time
visualization of the detection results. The connector’s 3D axis is overlaid on the video stream
using OpenCV, and its orientation is displayed numerically on the frame. This feedback is
essential for evaluating system performance and making adjustments during calibration.

Additionally, the detected 3D position and orientation are published as ROS topics, enabling
integration with the robot’s control system. These data serve as input for manipulation tasks,
such as grasping or assembly, ensuring precise interaction with the connector.

16

2.3. PLANNING

Advantages and Challenges

This approach combines geometric and color-based methods to achieve robust detection in clut-
tered and dynamic environments. The use of depth data enhances the system’s ability to resolve
occlusions and overlapping features, which are common in real-world scenarios. However, chal-
lenges remain in ensuring reliability under extreme lighting conditions or with objects of similar
colors in proximity.

Algorithm 1: ImageDepthProcessor Workflow

Input: RGB frame rgbframe, Depth frame depthframe

Output: Grasping point Pgrasp, Connector axis Axis3D, Smoothed orientation θsmooth

Initialization

1 Initialize ROS node and publishers for cable pose, connector axis, and debug frames;
2 Load camera intrinsics and setup trackbars for HSV segmentation;
3 Initialize ArUco detector and transformation utilities;
4 while frames are synchronized between RGB and Depth do

Step 1: Convert Input Frames

5 rgbframe ← Convert raw RGB frame to OpenCV format;
6 depthframe ← Convert raw depth frame to depth array;

Step 2: HSV Segmentation for Connector Detection

7 Convert rgbframe to HSV color space;
8 Apply HSV thresholds to extract connector mask maskconnector;
9 Identify contours and calculate bounding boxes for largest regions;

10 Compute 3D coordinates of connector centers using camera intrinsics;
11 Store valid points Points3D ← [P1, P2, . . .];

Step 3: ArUco Marker Detection and Pose Estimation

12 Detect markers in rgbframe and estimate poses (rvecs, tvecs);
13 Apply exponential smoothing to stabilize detected poses;
14 Publish smoothed marker poses Posemarker;

Step 4: Compute Connector Axis and Orientation

15 Axis3D ← Find principal axis between Points3D;
16 theta← Compute orientation angle from Axis3D;
17 θsmooth ← Apply smoothing to stabilize theta;
18 Publish axis and orientation Axis3D, θsmooth;

Step 5: Visualize and Publish Results

19 Annotate rgbframe with axis and grasping point;
20 Publish debug frames and poses via ROS;

21 Save updated HSV parameters and shutdown gracefully;
22 return Grasping point Pgrasp, Smoothed orientation θsmooth;

2.3 Planning

The Planning section addresses the transformation of perceived data into executable action plans,
ensuring that robots can generalize learned behaviors to new contexts and adapt to variability
in the environment or task requirements. This chapter introduces three fundamental tools that
contribute to flexible and adaptive planning:

• Dynamic Movement Primitives (DMPs): A flexible framework that allows for mod-
eling and reproducing complex trajectories in a stable manner, ensuring generalization and
adaptability.

17

CHAPTER 2. THEORETICAL FOUNDATIONS

• Denavit-Hartenberg inspired Bidirectional Representation (DHB): A bidirec-
tional representation that enables the description of trajectories in an invariant space,
eliminating dependencies on rotations, translations, or temporal variations.

• Trajectory and Orientation Generalization: A mathematical approach to adapting
trajectories and orientations learned in one context to new start and goal configurations,
enabling task execution in variable spatial and orientational setups.

2.3.1 Dynamic Movement Primitives (DMP)

“Dynamic Movement Primitives (DMPs) are a versatile and flexible framework that allows
robots to encode and reproduce complex movements in a stable and generalizable way.” [1]

Dynamic Movement Primitives (DMPs) are a robust and flexible framework widely used in
robotics for encoding and reproducing smooth, nonlinear trajectories learned from demonstra-
tions. Their key strength lies in their ability to generalize across different goals, allowing robots
to adapt movements to new situations. Furthermore, DMPs ensure global asymptotic stability,
making them well-suited to dynamic and unstructured environments where task requirements
may change unpredictably.

The DMP framework consists of two main components: a transformation system and a
canonical system. The transformation system generates the trajectory, while the canonical sys-
tem governs the temporal evolution of the movement, ensuring that the movement progresses
smoothly towards the goal.

Mathematical Formulation of DMPs The DMP framework is built upon a system of dif-
ferential equations designed to encode complex motor behaviors while ensuring stability and
flexibility. This system can generalize learned movements to new goal states and handle vari-
ability in the task execution.

Standard DMP Formulation The standard formulation of DMPs, as introduced by [33],
is based on a second-order dynamical system responsible for generating the desired movement
trajectory. The system comprises two key components:

• Transformation System: A second-order system that encodes the movement dynamics
and controls the trajectory.

• Canonical System: A first-order system that controls the evolution of the phase variable,
ensuring smooth progression towards the goal.

The transformation system is mathematically expressed as:

τ2ÿ = αz(βz(g − y)− τ ẏ) + f(x)

Where:

• αz and βz are positive gains controlling convergence towards the goal g,

• τ is a temporal scaling factor,

• f(x) is the nonlinear forcing term that encodes the learned trajectory from demonstrations.

18

2.3. PLANNING

The canonical system modulates the speed of the movement via the phase variable x, which
drives the forcing term f(x). This ensures that the system smoothly converges to the goal state
while maintaining flexibility and stability. This structure allows for online adjustments to the
movement, providing smooth transitions even in dynamic environments [33].

The transformation system can also be represented in state-space form as:

τ ż = αzβz(g − y)− αzz + gf (x)(g − y0)fs(x)

τ ẏ = z

Where z = τ ẏ represents the velocity, and y0 is the initial position. The phase variable x is used
to avoid direct dependency on time, and the temporal scaling factor τ determines the duration
of the movement.

The forcing term fs(x) is typically represented as a weighted sum of Gaussian basis functions,
ensuring that the trajectory learned from demonstrations is accurately captured:

fs(x) = ϕ(x)Tw

Where ϕ(x) = [ϕ1(x), . . . , ϕN (x)]T are Gaussian functions, and w are the weights that determine
the contribution of each function.

Advanced DMP Formulation with Reversibility Building upon the standard DMP for-
mulation, more recent work has extended the framework to include reversibility, allowing for
complex bidirectional movements. This is particularly useful in tasks like robotic assembly,
where robots must reverse actions, such as in insertion and extraction operations. The advanced
formulation presented by [28] decouples stiffness and damping parameters from the temporal
scaling factor, enabling smoother transitions between forward and backward motion.

The advanced transformation system is expressed as:

τ2ÿ = αzβz(g − y)− αzτ ẏ + gf (x)(g − y0)fs(x)

Where:

• gf (x) is a gating function ensuring the forcing term vanishes smoothly as the movement
approaches the goal,

• fs(x) modulates the learned trajectory.

This formulation provides enhanced flexibility in handling more complex movement trajecto-
ries, such as those requiring bidirectional behavior, making it particularly applicable to sophis-
ticated robotic manipulation tasks [28].

Properties of DMPs

The proposed DMP formulation retains all desirable properties of the original DMP. One of the
key advantages of DMPs is their global asymptotic stability at the target. Additionally, the stable
coordination of multiple Degrees of Freedom (DoFs) is similar to the original DMP formulation,
using a common canonical system for all DoFs, ensuring smooth and consistent movement even
in complex tasks requiring multiple coordinated actions.

Another important property of DMPs is their ability to scale spatially and temporally. When
there is a change in the initial/target position or the temporal scaling parameter τ , the generated
trajectories remain qualitatively similar or topologically equivalent. This scaling property is

19

CHAPTER 2. THEORETICAL FOUNDATIONS

verified through simulations, demonstrating that for different initial/target poses or temporal
scaling, the trajectories produced by the proposed DMP coincide with those of the original
formulation.

DMPs also exhibit robustness to perturbations, such as external disturbances. In such cases,
the phase stopping mechanism is employed, which results in the slowdown or even halt of the
trajectory generation by modifying the canonical system’s evolution. This can be expressed as:

τ ẋ =
h(x)

1 + |ad(t)|
Where d(t) represents the external disturbance, and a is a positive constant. Additionally, other
forms of phase stopping, such as sigmoid stopping, can also be implemented.

Another important feature of DMPs is their ability to incorporate coupling terms, which
allow the dynamical system to modify its trajectory based on external signals without the need
for replanning. These coupling terms have been applied to adjust the trajectory in real-time
based on external forces, enforce position or joint limits, and avoid obstacles. For instance, to
avoid limits, a repulsive force can be added at the velocity level:

ẏ = z − γ(yL − y)3

ż = ÿ −D(z − ẏ)−K(y − yL)

Where yL is the limit, and γ controls the effect of the repulsive force.
Obstacle avoidance can also be integrated as follows:

fo = γRy′ϕe−βϕ

Where R is a rotation matrix, and ϕ is the angle between the obstacle position po and the
trajectory of the DMP. This allows the robot to dynamically adjust its movement to avoid
obstacles during task execution.

Applications of DMPs in Robotic Tasks

DMPs have been successfully applied across a wide range of robotic tasks, particularly in situ-
ations requiring precise and adaptable movement control. One notable application is in robotic
assembly tasks, such as peg-in-hole operations, where DMPs encode demonstrated trajectories
and adapt them to new goals in real-time.

During the teaching phase, robots record human demonstrations, capturing key information
such as position, orientation, and forces during the task. This information is then encoded into
the DMP framework, enabling robots to autonomously reproduce the task while generalizing it
to different goals and conditions. DMPs provide stability and robustness, even in the presence of
disturbances or changes in the environment, ensuring that the robot can execute tasks accurately
and adaptively [11].

Generalization and Adaptability in DMPs A significant advantage of DMPs is their abil-
ity to generalize movements to different goal states or starting conditions. This capability is
particularly valuable in scenarios where the robot must perform the same task in varying con-
texts, such as grasping objects of different sizes or shapes. The forcing term f(x) in the DMP
formulation enables robots to adapt the learned movement to these new conditions while main-
taining the core characteristics of the original trajectory [1].

This generalization feature has been applied successfully in tasks such as object manipulation
and pick-and-place operations, where robots must handle variability in object size, weight, or
position. DMPs allow robots to perform these tasks without requiring extensive reprogramming
or additional demonstrations.

20

2.3. PLANNING

Cooperation in Human-Robot Collaboration DMPs have also been leveraged in cooper-
ative human-robot tasks, where robots collaborate with humans to perform shared tasks such as
co-manipulation. In these scenarios, the robot can adjust its movements in real-time based on
human input, ensuring smooth and safe interactions. The flexibility and adaptability of DMPs
make them particularly suitable for these applications, where precise coordination between hu-
man and robot actions is essential.

For example, in co-manipulation tasks, the robot can adjust its trajectory based on the
force exerted by the human, allowing for seamless collaboration. This capability is enabled by
the real-time adaptability of DMPs, which can respond dynamically to changes in the task or
environment, providing a natural and intuitive interaction between human and robot [22].

Advantages and Limitations of DMPs

Dynamic Movement Primitives (DMPs) offer several advantages, making them a powerful tool for
robotic motion generation. However, as with any framework, they also present certain limitations
that researchers continue to address.

Advantages of DMPs DMPs provide numerous benefits in robotic motion control, which are
essential for dynamic and adaptive robotic tasks:

• Generalization: DMPs allow robots to adapt learned movements to new goals and con-
texts with minimal adjustment. This generalization is particularly valuable in tasks where
robots must repeat similar actions across variable scenarios, as it reduces the need for
reprogramming.

• Stability: The underlying dynamical system of DMPs ensures global asymptotic sta-
bility, which guarantees smooth convergence to the target position even in complex, high-
dimensional tasks. This stability is especially beneficial in environments with unpredictable
conditions.

• Real-time Adaptation: DMPs enable real-time adjustments to motion, which allows
robots to respond to changes in the environment, disturbances, or modifications in task
requirements. The phase stopping mechanism and coupling terms provide robustness to
external forces and disturbances.

• Modularity: The modular structure of DMPs allows complex tasks to be achieved by
sequencing or blending simpler movement primitives. This modularity provides flexibility
in programming diverse tasks and combining different motion components to generate
sophisticated behaviors.

• Ease of Learning from Demonstration (LfD): DMPs are well-suited for learning
from demonstration, as they can encode trajectories from human-guided demonstrations,
capturing essential kinematic features. This enables robots to learn and replicate complex
movements without extensive manual coding.

Limitations of DMPs Despite their strengths, DMPs also present limitations that can con-
strain their use in certain applications:

• Limited Flexibility in High-Dimensional Spaces: While DMPs are effective for tasks
with lower degrees of freedom (DoF), their scalability to high-dimensional systems remains
challenging. Managing the complexity and interactions between multiple DoFs can become
computationally expensive.

21

CHAPTER 2. THEORETICAL FOUNDATIONS

• Dependency on Predefined Goal States: DMPs require well-defined goal states for
accurate trajectory generation. In cases where the goal state is not clearly specified or
needs to be dynamically determined, additional components are often required to enhance
flexibility.

• Forcing Term Complexity: The forcing term f(x) requires careful tuning of weights and
Gaussian functions to capture the nuances of complex trajectories accurately. Improper
tuning can result in suboptimal motion generation, limiting the accuracy and adaptability
of the DMP.

• Limited Task Reversibility: Although advanced DMP formulations with reversibility
exist, reversing learned tasks efficiently remains a challenge. This limitation can be critical
in tasks like assembly/disassembly, where bidirectional movement is required.

Researchers continue to explore solutions to address these limitations, such as integrating
machine learning models for adaptive goal-setting, optimizing the design of Gaussian basis func-
tions in the forcing term, and developing hybrid systems that combine DMPs with other motion
generation techniques for more complex, multi-DoF tasks.

2.3.2 Bidirectional Invariant Representation

The Bidirectional Invariant Representation offers a powerful framework for describing rigid body
motions in a manner that is invariant to transformations such as rotations, translations, scaling,
and time variations. This approach has been particularly effective in applications such as gesture
recognition and reproduction, where robustness to variations in viewpoint and execution speed
is crucial [20].

What is an Invariant Representation?

An invariant representation is a mathematical approach for describing objects or motions in a way
that is resistant to specific transformations, such as rotation, translation, scaling, or temporal
variations. This concept is foundational in fields such as robotics, computer vision, and pattern
recognition, where it is essential to recognize actions, gestures, or objects despite changes in
position, orientation, or size.

In robotics, invariant representations allow systems to interpret actions consistently across
different viewpoints or environmental conditions, a requirement for effective human-robot inter-
action (HRI). For instance, in gesture recognition, the position and movement of a human’s arm
may vary in absolute terms, but an invariant representation abstracts these motions to capture
the essential structure of the action, enabling recognition independent of initial pose or speed
[31][30][36].

Principles of Invariant Representations The core principle behind invariant representa-
tions is to transform data from its original space into a feature space that filters out non-essential
information, preserving only the attributes relevant to the task at hand. For example, curva-
tures and spatio-temporal curvature can be employed as invariant descriptors to capture critical
aspects of motion. Spatio-temporal curvature, in particular, is effective in identifying ”dynamic
instants” (i.e., significant changes in speed or direction), which are essential for interpreting
complex gestures and motions.

22

2.3. PLANNING

Types of Invariance in Robotics In robotic gesture recognition and motion reproduction,
invariant representations are designed to ensure that systems can handle:

• Rotational and translational invariance: Essential in tasks where the robot observes
actions from different viewpoints. Rototranslation invariance is achieved by using de-
scriptors that maintain their value under changes in reference frame, supporting stable
recognition across multiple angles and perspectives. This principle is particularly valuable
in HRI, where it eliminates the dependency on specific spatial configurations of the user
relative to the robot sensor.

• Temporal invariance: Critical for actions performed at varying speeds. By normaliz-
ing time-dependent features, invariant representations enable consistent interpretation of
gestures regardless of the speed of execution. Temporal alignment techniques, such as dy-
namic time warping, enhance this capability by synchronizing similar actions with different
temporal characteristics, thus aiding in action recognition across different speeds.

• Scaling invariance: Useful in scenarios where gestures or movements vary in size. Linear
scaling invariance allows invariant representations to handle variations in amplitude or spa-
tial extent, facilitating gesture recognition in users of different body sizes or with gestures
that vary in range.

Applications in View-Invariant Action Recognition Recent approaches to action recog-
nition, especially in the domain of computer vision, emphasize view-invariant methods to ensure
robust recognition from various angles and perspectives. By defining actions as sequences of ”dy-
namic instants” and ”intervals,” researchers have demonstrated that spatio-temporal curvature
can effectively represent human actions as consistent patterns, even when observed from different
views. For example, changes in trajectory curvature can indicate specific action segments (e.g.,
picking up, lifting, or releasing), which are central to view-invariant recognition frameworks.

Principles of Bidirectional Invariant Representation

The fundamental principle behind this framework is to transform motion trajectories into a
space that is invariant to common transformations, while still retaining the ability to reconstruct
the original motion. This is achieved by mapping the original motion in Cartesian space to an
invariant space through a set of transformations that preserve the underlying structure of the
movement but remove any dependency on the specific coordinate frame or scale.

In the context of gesture recognition and reproduction, this allows for the recognition of
gestures even when they are performed with variations in speed, orientation, or position. The
bidirectional nature of the representation means that not only can gestures be recognized from
their invariant representation, but they can also be reconstructed in Cartesian space with high
fidelity.

Mathematical Formulation of DHB

The mathematical formulation of the Bidirectional Invariant Representation is inspired by the
Denavit-Hartenberg (DHB) convention, commonly used in robotics to describe the configuration
of rigid body systems. In this approach, rigid body motions are represented using a minimal set
of six parameters: three for the position and three for the orientation.

23

CHAPTER 2. THEORETICAL FOUNDATIONS

Definition of Position and Orientation Frames: To achieve an invariant description of
motion, two separate frames are defined: one for the position and one for the orientation. The
position at each time t is represented by a vector p(t), while the orientation is described by a
minimal rotation vector r(t), which captures the rotation as an axis-angle pair.

Axis Assignment within Frames: - The axes of the position frame are defined as:

xp(t) =
p(t+∆t)− p(t)

∥p(t+∆t)− p(t)∥
,

yp(t) =
xp(t)× xp(t+∆t)

∥xp(t)× xp(t+∆t)∥
,

zp(t) = xp(t)× yp(t).

- For the orientation frame, we use a normalized rotation vector:

xr(t) =
r(t)

∥r(t)∥
,

with yr(t) and zr(t) defined analogously through cross-products.

Invariant Position and Orientation Values: - The invariant values describing position and
orientation between consecutive frames are computed as:

mp(t) = ∥p(t+∆t)− p(t)∥,

mr(t) = ∥r(t+∆t)− r(t)∥.
These invariants capture the translational and rotational motion components between frames,
preserving essential motion details while removing dependency on absolute positioning.

Rotational Alignment Angles: - To align subsequent frames, the angles θ1 and θ2 are
calculated for both position and orientation frames:

θp1 = arctan

(
xp(t)× xp(t+ 1)

xp(t) · xp(t+ 1)
· yp(t)

)
,

θp2 = arctan

(
yp(t)× yp(t+ 1)

yp(t) · yp(t+ 1)
· xp(t+ 1)

)
,

with similar expressions for the orientation frame’s angles θr1 and θr2

Invariance Properties: The DHB representation ensures multiple invariance properties that
are critical for tasks involving gesture recognition and robotic motion reproduction:

• Invariance to rotation and translation: The representation is unaffected by the initial
position or orientation, allowing for robust recognition across varying viewpoints.

• Temporal invariance: By normalizing temporal aspects, DHB supports gesture recogni-
tion at varying speeds.

• Scalability: DHB’s scaling invariance accommodates gestures or movements of different
sizes, useful when interacting with users of different body dimensions.

These invariance properties make the Bidirectional Invariant Representation a powerful tool
for human-robot interaction, where variations in user execution, perspective, and environment are
common. The ability to reconstruct motion from invariant values further enhances its application
potential in tasks that require both recognition and precise reproduction of gestures [20].

24

2.3. PLANNING

2.3.3 Trajectory and Orientation Generalization

Generalization is a critical aspect of planning that enables robots to adapt learned trajectories
and orientations to new starting and goal conditions. This capability is particularly valuable
in dynamic environments or tasks where the spatial and rotational configuration of objects can
vary. This section introduces the mathematical framework used for trajectory and orientation
generalization, ensuring adaptability and precision.

Generalization of Trajectory

The process of trajectory generalization involves scaling and transforming a learned trajectory
to align with new start and goal positions. The following equations define the generalization
process:

x̃td(t) = sL(t)R(t)
(
xd
td − xd

1

)
+ xstart(t)

Where:

• x̃td(t): Generalized position trajectory at time t,

• xd
td: Original learned trajectory,

• xd
1: Initial position of the learned trajectory,

• xstart(t): New start position,

• R(t): Rotation matrix aligning the learned trajectory with the new goal,

• sL(t): Scaling factor defined as:

sL(t) =
∥xgoal(t)− xstart(t)∥

∥xd
Td
− xd

1∥

Where xgoal(t) represents the new goal position, and xd
Td

is the final position of the learned
trajectory.

Additionally, the generalized velocity trajectory is computed as:

vgen(t) = sL(t)R(t)vlearn(t)

Where vlearn(t) is the learned velocity trajectory.

Generalization of Orientation

Orientation generalization is achieved by scaling Euler angles based on the relative difference
between the start and goal orientations. The process is defined as follows:

∆eoriginal = egoal − estart

∆enew = egoal,new − estart

The scaling factor for each axis is computed as:

s =
∆enew

∆eoriginal

25

CHAPTER 2. THEORETICAL FOUNDATIONS

The generalized orientation trajectory is obtained by scaling the difference between the tra-
jectory and the start orientation:

∆etraj(t) = etraj(t)− estart

∆escaled(t) = ∆etraj(t) · s

escaled(t) = estart +∆escaled(t)

This method ensures that the orientation trajectory adapts to new conditions while main-
taining the relative shape of the original trajectory.

2.4 Execution

The Execution chapter focuses on the implementation and control of the generated action plans,
with particular emphasis on real-time adaptability and modular execution. In this phase, robots
must translate plans into concrete behaviors, dynamically reacting to changes in the environ-
ment or unforeseen events. Behavior Trees (BTs) serve as the central framework described in
this chapter, offering a hierarchical and modular structure for managing robotic actions. Their
tree-like architecture allows the decomposition of complex behaviors into simpler sub-behaviors,
ensuring scalability, reusability, and immediate response to changes.

The chapter highlights the advantages of BTs over other control architectures, such as Finite
State Machines (FSMs), emphasizing their flexibility and integration with platforms like ROS.
It also describes how BTs support real-time control by combining environmental conditions and
predefined actions to ensure robust and responsive execution.

2.4.1 Behavior Trees

The Behavior Tree (BT) is a powerful control architecture widely used in robotics, artificial
intelligence, and video games. BTs allow autonomous systems to execute actions in a modular
and hierarchical fashion, enabling better scalability, flexibility, and reusability compared to tra-
ditional control systems such as Finite State Machines (FSMs) [14]. This section will introduce
the key components and structure of BTs, followed by an exploration of their advantages and
applications in robotics.

Key Components and Structure

A Behavior Tree consists of two main types of nodes: control flow nodes and execution nodes.
Control flow nodes dictate the flow of execution, while execution nodes represent actions or
conditions that the robot must evaluate or perform. The BT starts at the root node and executes
nodes based on a recursive tick system, propagating from parent to child nodes.

As shown in Table 2.2, the Behavior Tree nodes have different outcomes based on their
execution flow:

• Sequence Node: This node executes its children in order until one returns failure or is
running. If all children succeed, the sequence node returns success.

• Fallback (Selector) Node: This node checks its children sequentially until one returns
success or is running. It is typically used to implement behaviors where alternative actions
must be tried until one succeeds.

26

2.4. EXECUTION

• Action Nodes: These nodes execute tasks or actions, such as moving the robot or grasping
an object. They return success, failure, or running based on the state of the action.

• Condition Nodes: These nodes check whether a condition holds (e.g., whether an object
is detected) and return success or failure.

• Decorator Nodes: These modify the behavior of other nodes, such as retrying a node a
set number of times or inverting its result.

Node type Symbol Succeeds Fails Running
Fallback ? If one child succeeds If all children fail If one child returns

Running
Sequence → If all children suc-

ceed
If one child fails If one child returns

Running
Parallel ⇒ If ≥M children suc-

ceed
If > N −M children
fail

else

Action text Upon completion If impossible to
complete

During completion

Condition text If true If false Never
Decorator ⋄ Custom Custom Custom

Table 2.2: Behavior Tree node types and their respective outcomes.

The modular structure of BTs allows behaviors to be divided into smaller, reusable sub-
behaviors. Each sub-behavior can be independently designed and tested, which enhances the
system’s maintainability and readability [14].

Advantages and Applications in Robotics

BTs offer significant advantages over traditional control architectures like FSMs. These advan-
tages include:

• Modularity: BTs promote the creation of reusable and interchangeable behaviors, allow-
ing developers to easily modify or extend the system.

• Reactivity: The tick-based execution ensures that BTs can react to dynamic changes in
the environment, providing a level of adaptability that is essential in unstructured settings.

• Scalability: Unlike FSMs, BTs do not suffer from the state explosion problem. The
hierarchical nature of BTs allows complex behaviors to be composed of smaller, simpler
sub-behaviors, making it easier to manage large systems.

• Human-Readable Structure: The tree structure of BTs is easy to visualize, which
simplifies debugging and comprehension for developers.

In robotics, BTs have been successfully implemented in various applications, including robotic
manipulation, navigation, and multi-agent coordination. For example, BTs are commonly used in
pick-and-place operations, where a robot must grasp and move objects in a dynamic environment.
The modularity of BTs allows these operations to be defined in a flexible manner, facilitating
the addition of fallback behaviors in case of failure. Moreover, in multi-agent systems, BTs
have proven effective in managing complex behaviors across teams of robots, enabling real-time
decision-making and execution.

27

CHAPTER 2. THEORETICAL FOUNDATIONS

Implementation of Behavior Trees in ROS

Behavior Trees have been integrated with the Robot Operating System (ROS), which provides a
robust platform for building complex robotic applications. There are several libraries available
for implementing BTs in ROS, such as py trees and BehaviorTree.CPP. These libraries offer
pre-defined nodes and tools for integrating BTs with ROS topics, services, and actions [25].

A common implementation strategy involves the following steps:

• Defining the Tree Structure: The tree structure is defined using a combination of action,
condition, and control flow nodes. These nodes are linked to specific ROS functionalities,
such as subscribing to topics or invoking actions.

• Creating Custom Nodes: Developers can create custom nodes to interface with the
robot’s hardware, such as sensors and actuators. These nodes can be written in C++ or
Python and integrate directly with ROS messages.

• Execution of the Tree: Once the tree is defined, it is continuously ticked by the BT
engine, allowing real-time decision-making based on sensor inputs and action feedback.

This approach facilitates the integration of BTs into robotic systems, allowing for flexible,
modular, and reactive control strategies. Furthermore, ROS enables seamless communication be-
tween the behavior tree nodes and the robot’s hardware components, enhancing the adaptability
of the system in dynamic environments.

28

Chapter 3

Materials and Equipment

3.1 Introduction

The study of robotic manipulation has grown increasingly significant in recent years, as robotics
systems are required to perform complex and precise tasks across diverse environments and
applications. Achieving reliable manipulation capabilities requires a careful balance of hardware,
software, and experimental design to ensure flexibility, control, and adaptability in real-world
settings.

This chapter details the setup and configuration of a custom experimental environment specif-
ically designed to support robotic manipulation research. This environment includes a modular
assembly board, a robotic arm and various tools for manipulation. These components work to-
gether to simulate a variety of assembly tasks that involve both rigid and deformable objects,
with particular focus on an Ethernet cable as a representative deformable object.

The goal of this setup is to enable the robotic arm to perform manipulation tasks au-
tonomously while maintaining precision and control. Key aspects covered in this chapter include
the design and purpose of the custom assembly board, the selection and arrangement of exper-
imental materials, the hardware equipment utilized, and the software tools required to operate
the system. Each section provides a comprehensive description of the components involved,
alongside their roles and technical specifications.

3.2 Custom Assembly Board for Robotic Manipulation

Robotic manipulation is a field that requires precise engineering solutions to enhance the ability
of robots to interact with the environment and autonomously manipulate objects. One of the
fundamental aspects of this manipulation is the creation of modular surfaces that allow the
robotic system to perform a variety of operations in a flexible and efficient manner.

The basic idea behind the design of the board is inspired by similar solutions adopted in the
field of robotic assembly, as described by the National Institute of Standards and Technology
(NIST).

NIST has developed multiple modular platforms for robotic assembly that facilitate the ma-
nipulation and grasping of objects through flexible configurations that support a wide range
of tasks [27]. These platforms allow the simulation of different working conditions, offering a
controlled yet highly adaptable environment for testing robotic manipulation algorithms and
methodologies.

29

CHAPTER 3. MATERIALS AND EQUIPMENT

Figure 3.1: Modular assembly board configurations: base setup (left), various tool arrangements
(center), and cable manipulation scenario (right).

Building on these principles, I have designed a custom solution aimed at supporting the
manipulation of both deformable and rigid objects within a demonstration learning context.
The design of the board and its technical specifications are outlined below.

3.2.1 Inventory of Experimental Equipment and Materials

This section summarizes, in the Table 3.1, the key materials and components employed during
the experimental phase. Each component plays a specific role in testing and validating the
robotic manipulation system.

Board Design and Purpose

The basic idea is to draw inspiration from one of the boards presented by NIST [27], and adapt
it to better suit the project’s needs. This board was designed to serve as a versatile platform for
robotic manipulation tasks, with the primary goal of simulating a range of assembly scenarios
in a controlled and adaptable environment. The design of the board is modular, and unlike the
examples taken as inspiration, it offers greater versatility, allowing multiple configurations that
support different manipulation objectives, such as grasping, sorting, and assembling both rigid
and deformable objects.

As shown in Figure 3.1, a more flexible approach was adopted, allowing the creation of
multiple patterns with the help of a hole matrix, enhancing the robot’s ability to adapt to different
conditions. As illustrated, the board can be configured in various ways to meet the needs of each
experiment. These configurations were chosen to test the robot’s ability to manipulate objects of
varying shapes, sizes, and materials, providing a robust platform for evaluating robotic grasping
and manipulation strategies.

30

3.2. CUSTOM ASSEMBLY BOARD FOR ROBOTIC MANIPULATION

Component Description Material
Board 400 mm x 400 mm x 20 mm board

with 169 holes
Wood

Aruco Marker 4 placed on the corners, 4 placed
on the connector of the cable

Paper (printed)

Feet Supports 4 supports with rubber anti-slip
bearings

Rubber

Grasped Objects Various shapes (tubes, clips,
holders.)

Plastic

Ethernet Cable Flexible deformable cable Rubber
Connectors Electrical connectors for assembly Plastic, Metal
Blue Tape Required for cable detection Stretch fabric
6-Axis Force-Torque Sensor Used for precise force feedback

during manipulation
Aidin Robotics (Model X)

Camera Intel RealSense depth camera -
Robotic Arm Franka Emika Panda (FEP) -
Assembly Tools - -

Table 3.1: List of Materials and Components Used in Experiments

Parameter Description
Dimensions 400 mm x 400 mm x 20 mm
Material Wood with a perforated matrix
Hole diameter 4 mm
Grid spacing 25 mm between holes, 2 mm from the edge
Hole grid 169 holes (13 x 13 matrix)
Surface finish White spray paint
Aruco markers 4 markers, 7 cm x 7 cm, placed on the four corners
Feet supports 4 supports with 5 rubber anti-slip bearings each
Mounting compatibility Compatible with Franka Emika Panda robotic arm
Configurations supported Multiple configurations possible due to the hole matrix,

with a few examples shown in Figure 3.1

Table 3.2: Technical Specifications of the Custom Board

Objects and Components for Manipulation

The robotic manipulation procedure was designed to address a series of challenges related to the
handling of both rigid and deformable objects. These include a variety of geometric shapes used
to interact with the only deformable object considered: the Ethernet cable.

The 3D models employed were inspired by examples presented by NIST, as they were already
suited for approaches similar to the final project. These models were subsequently revised and
customized to better fit the specific requirements of the robotic manipulation system and the
experimental setup.

All objects were 3D printed using plastic material and were carefully adapted to the dimen-
sions of the board and the cable used in the experiments. A detailed list of the 3D-printed
tools, including their names, technical specifications, and representative images, is provided in
Appendix A.

In addition to the objects for manipulation, the system utilizes additional components, such

31

CHAPTER 3. MATERIALS AND EQUIPMENT

as the Ethernet cable and, specifically, its connector, which was the subject of a detailed study
to ensure it could be easily handled by the robotic arm. Two main modifications were made to
facilitate the grasping and recognition of the connector:

• The use of colored tape to improve the visibility and localization of the connector.

• The addition of Aruco markers via a specific support to enhance tracking and precision
during manipulation.

The goal of the manipulation procedure is to assess the robot’s effectiveness in executing tasks
such as grasping, moving, and assembling, while maintaining high precision and force control.
These tasks are carried out with the assistance of force-torque sensors integrated directly into
the robotic arm, which monitor real-time contact between the robot and the object, ensuring
optimal and safe interaction.

3.3 Hardware Equipment

This section provides an overview of the key hardware components used in the robotic manipu-
lation system.

3.3.1 Robotic Arm (Franka Emika Panda)

The FEP robotic arm is a high-precision manipulator designed for complex robotic tasks. It
has 7 degrees of freedom, which allow it to perform dexterous manipulations in a wide range
of scenarios. The arm is equipped with integrated force-torque sensors in its joints, enabling
it to interact delicately with objects while monitoring contact forces in real-time. This feature
is particularly useful for tasks that require careful manipulation, such as handling deformable
objects like the Ethernet cable. The robotic arm is responsible for executing all the manipulation
tasks, including grasping, moving, and assembling objects on the custom board.

Parameter Specification
Degrees of Freedom (DOF) 7
Payload 3 kg
Reach 855 mm
Repeatability ±0.1 mm
Joint Torque Sensors Integrated in all 7 axes
Force-Torque Sensing Integrated in the end effector
Maximum Joint Velocity 2.15 rad/s
Control Interface ROS-compatible, high-level APIs

Table 3.3: Technical Specifications of the Franka Emika Panda Robotic Arm

3.3.2 Camera (Intel RealSense D435i)

The Intel RealSense D435i is a depth camera that provides critical visual feedback and depth
perception, essential for accurate object tracking and manipulation. This camera is equipped with
a wide field of view (86° x 57°) and an RGB sensor with a resolution of up to 1920x1080 pixels.
It also includes an IMU (Inertial Measurement Unit) that allows for tracking the orientation and
movement of the camera, improving spatial awareness in dynamic environments.

32

3.4. SOFTWARE TOOLS

In the context of this project, the D435i is used to monitor the 3D position and orientation
of objects such as the Ethernet cable and its connector. The depth camera provides detailed
information with a range of up to 10 meters, enabling precise alignment during manipulation
tasks. The depth data also assist in detecting potential collisions and improving the accuracy of
the robot’s movements.

Parameter Specification
Depth Field of View (FOV) 86° (H) x 57° (V)
Depth Resolution Up to 1280x720 pixels
RGB Resolution Up to 1920x1080 pixels
Maximum Range 10 meters
Frame Rate (Depth) Up to 90 fps
Inertial Measurement Unit (IMU) 6 DOF (Gyroscope and Accelerometer)

Table 3.4: Technical Specifications of the Intel RealSense D435i Camera

3.4 Software Tools

This section describes the main software tools used for controlling the robotic manipulation
system and supporting the experimental setup.

3.4.1 ROS (Robot Operating System)

ROS is an open-source middleware widely used in robotics to manage communication between
different components of a robotic system. It provides a collection of libraries and tools that help
developers build robotic applications.

3.4.2 Aruco Libraries

The Aruco libraries are a set of functions used to detect Aruco markers in the environment,
providing robust and accurate tracking of objects and coordinates. These libraries are integrated
into the system to detect and track the Aruco markers placed on the assembly board and the
Ethernet cable connector.

3.4.3 Other Software Tools

Additional software tools were employed to support the manipulation experiments, including:

• Python: The main programming language used to develop control algorithms and interface
with hardware components.

• Gazebo: A robotics simulator used to test algorithms in a virtual environment before
applying them to the real robot.

• Rviz: A 3D visualization tool used in ROS to visualize sensor data, the robot’s state, and
the environment.

• OpenCV: A computer vision library used for image processing and object detection, pro-
viding support for tracking the Ethernet cable and its connector.

33

CHAPTER 3. MATERIALS AND EQUIPMENT

34

Chapter 4

System Design and Development

4.1 Introduction

The design and development of an autonomous robotic manipulation system involve a careful
balance of hardware integration, software architecture, and system optimization. This chap-
ter provides an in-depth exploration of the engineering decisions and implementation strategies
adopted to enable the robotic system to handle both rigid and deformable objects in a dynamic
environment.

Key elements of the system include the integration of advanced sensors and actuators, the use
of a modular assembly board, and the implementation of a robust software architecture based on
the Robot Operating System (ROS). The chapter begins by outlining the system requirements
and design goals that guided the development process. Following this, it details the integra-
tion of hardware components, the synchronization of sensors and actuators, and the challenges
encountered during the implementation phase.

Additionally, the software architecture is described, highlighting the communication strategies
and motion planning techniques that ensure the system’s efficiency and adaptability. Finally,
the chapter concludes with a discussion of potential future improvements to further enhance the
system’s capabilities and scalability.

4.2 System Requirements and Design Goals

The primary objective of the robotic manipulation system is to enable the autonomous handling
of both rigid and deformable objects in a dynamic and controlled environment. This requires
a combination of advanced hardware integration, precise motion planning, and reliable software
communication. This section outlines the functional requirements and design goals that guided
the system’s development.

4.2.1 Functional Requirements

To achieve the desired level of autonomy and precision, the system must meet the following
functional requirements:

• Object Detection and Localization: The system must accurately detect and track
objects, including deformable components, using visual markers (e.g., Aruco markers),
color and shape detection, and depth cameras.

35

CHAPTER 4. SYSTEM DESIGN AND DEVELOPMENT

Figure 4.1: System design illustrating the teaching, encoding, and reproducing phases for tra-
jectory learning and execution using invariant representations and Cartesian impedance control.

• Precise Manipulation: The robotic arm must be capable of performing fine manipulation
tasks such as grasping, moving, and assembling objects while maintaining control over force
and position. For this purpose, the inclusion of a pair of fingertips for the end effector (EE)
is critical for accurate and functional manipulation.

• Adaptability to Variability: The system must handle variability in object positions,
orientations, and environmental conditions, demonstrating flexibility in real-world scenar-
ios.

• Robust Data Flow: Establish seamless communication between sensors, actuators, and
the control system to ensure real-time responsiveness.

4.2.2 Design Goals

The system was developed following these design principles:

• Modularity: Design a system architecture that allows for the easy integration of ad-
ditional hardware or software components. Particular attention was given to the board,
inspired by the NIST project [27], which enables countless configurations for arranging
tools on it. Unlike the original design, which features a predefined configuration, this
board provides significant flexibility. Additionally, the use of Behavior Trees (BTs) en-
sures a degree of hardware flexibility in completing tasks, allowing the system to adapt to
different configurations and hardware setups without significant reprogramming.

• Scalability: The system is designed to support future upgrades, including handling more
complex tasks or integrating additional robotic capabilities such as dual-arm manipulation
or more sophisticated sensors.

• Precision and Reliability: Emphasize precision in manipulation tasks while ensuring
consistent performance under variable conditions. For example, trajectory generalization

36

4.2. SYSTEM REQUIREMENTS AND DESIGN GOALS

Category Subcategory Description

Functional Requirements

Object Detection Detect objects using Aruco markers, color and shape
detection, and depth cameras.

Precise Manipulation Perform fine tasks using customized fingertips for the
EE.

Adaptability Handle variability in object poses and environmental
conditions.

Data Flow Ensure real-time communication between sensors
and actuators.

Design Goals

Modularity Enable integration of new hardware/software; flexi-
ble board inspired by NIST.

Scalability Support upgrades for more complex tasks and ad-
vanced sensors.

Precision Ensure consistent task execution and adaptability to
object poses.

Tool Integration Seamlessly integrate with ROS, Aruco, and motion
planning tools.

Constraints
Joint Limits Avoid configurations exceeding robotic arm’s joint

mobility.
Hardware Constrained by sensor resolution and tool design/-

materials.
Environment Stable lighting required for color detection; reduce

sensor noise.

Table 4.1: Summary of System Requirements and Design Goals

based on the cable’s detected pose on the board ensures the system can adapt dynamically
to different initial conditions and execute tasks with high accuracy.

• Integration with Existing Tools: Ensure compatibility with the ROS framework and
leverage existing tools, such as Aruco libraries and dynamic motion planning algorithms,
to streamline development and reduce system complexity. This approach ensures seamless
integration of vision-based detection and motion control.

4.2.3 Constraints

The system design is subject to the following constraints:

• Joint Mobility Limitations of the Robotic Arm: The robotic arm has specific joint
limits that restrict certain rotations and configurations. This prevents the end effector
(EE) from operating effectively when positioned too far from or too close to the robot’s
base frame. These limitations must be carefully addressed during task planning to avoid
configurations leading to kinematic singularities or reduced precision. This includes ana-
lyzing workspace reachability and avoiding redundant postures that can lead to instability
or inefficiency.

• Hardware Specifications: The system is constrained by the capabilities of its hardware
components, such as the depth camera resolution and the design of the tools used on the
board. The tools depend on the material used during 3D printing and their design and
functionality. These factors can influence the system’s ability to execute tasks efficiently
and require careful consideration during development and testing.

37

CHAPTER 4. SYSTEM DESIGN AND DEVELOPMENT

• Environmental Factors: The system must function reliably under variable lighting con-
ditions and potential sensor noise. In this project, the need for color detection was par-
ticularly sensitive to lighting, requiring consistent illumination throughout operations to
ensure accuracy. Addressing these factors involved stabilizing the lighting conditions in the
experimental setup and calibrating sensors to minimize noise and enhance robustness.

4.3 Integration of Hardware Components

This section describes the integration of the key hardware elements, focusing on their configura-
tion and synchronization to ensure seamless operation.

4.3.1 Integration of the Robotic Arm and Sensors

The robotic arm, Franka Emika Panda (FEP), serves as the main manipulator in the system.
The integration process included:

• Camera Mounting and Calibration: An Intel RealSense D435i depth camera was
mounted on the robotic arm in an Eye-on-Hand configuration. This setup allows the camera
to move with the end effector, providing real-time visual feedback for object detection and
tracking. A detailed calibration process was conducted to align the camera’s coordinate
system with the base frame of the robotic arm. This ensures accurate spatial referencing
for manipulation tasks and prevents misalignment errors during operation.

• End Effector Configuration: A customized end effector (EE) with interchangeable fin-
gertips was designed and attached to the arm, providing enhanced grip and adaptability
for handling both rigid and deformable objects. The fingertips were optimized for manip-
ulating Ethernet cables and connectors with high precision.

• Communication Interface: The robotic arm and sensors communicate through a ROS-
based interface, which allows real-time data exchange and ensures synchronized operation
between sensing and actuation components.

4.3.2 RealSense and Aruco Synchronization

The Intel RealSense D435i depth camera plays a crucial role in providing real-time visual feedback
for object detection and manipulation. To achieve precise spatial referencing, the camera’s
functionality was enhanced through the use of Aruco markers. The key aspects of synchronization
include:

• Aruco Marker Placement and Detection: Aruco markers were strategically placed on
the assembly board and the cable connectors to serve as reliable reference points. These
markers were detected in real-time using ROS-compatible libraries, enabling the system to
calculate their positions and orientations relative to the camera’s coordinate frame.

• Calibration for Coordinate Alignment: A precise calibration process was performed
to align the camera’s coordinate frame with the base frame of the robotic arm. Using a
hand-eye calibration method, the system established a unified spatial reference, ensuring
that visual data could be accurately translated into the robot’s workspace.

38

4.3. INTEGRATION OF HARDWARE COMPONENTS

• Depth Data Processing and Object Pose Estimation: Depth data from the Re-
alSense camera was combined with the marker detection to estimate the 3D poses of ob-
jects. This included calculating the position and orientation of deformable objects, such as
cables, and dynamically updating these values to support real-time manipulation.

• Real-Time Integration and Synchronization: The integration between the camera
and the robotic arm was implemented through a ROS-based framework, enabling synchro-
nized updates between visual data and robotic motion. This synchronization ensured that
changes in the workspace, such as object displacement, were promptly reflected in the
robot’s action plans.

4.3.3 Custom Assembly Board and Object Manipulation

The custom assembly board was designed to provide a modular and adaptable workspace for
robotic manipulation tasks. Its integration focused on maximizing flexibility and stability:

• Modular Design: The board features a perforated matrix that allows for multiple config-
urations, enabling the placement of objects and tools in various positions. This modularity
supports testing a wide range of manipulation scenarios.

• Aruco Markers for Spatial Alignment: Four Aruco markers were affixed to the board’s
corners to define its position relative to the robot’s workspace. This alignment facilitates
consistent object placement and repeatability in experiments.

• Stability and Anti-Slip Mechanism: The board is supported by anti-slip rubber feet,
ensuring stability during high-precision tasks. This prevents unintended movement that
could affect the robot’s performance.

• Adaptability for Deformable Objects: Specific modifications were made to support
deformable object manipulation. For example, blue tape was added to the Ethernet cable
to improve visibility for the camera, and additional supports were designed to stabilize the
cable during manipulation.

4.3.4 Challenges in Hardware Integration

Several challenges were encountered during the integration of hardware components, including:

• Camera Calibration Accuracy: Achieving precise alignment between the camera and
the robotic arm required iterative calibration procedures and validation using test objects.
This ensured consistency in pose estimation during experiments.

• Workspace Optimization: Configuring the assembly board to maximize accessibility
while respecting the joint limits of the robotic arm required careful placement and testing
to avoid configurations that could lead to reduced performance or collisions. Different
positions and orientations of the board relative to the robot’s base were tested to ensure
the robot could operate freely without restrictions.

• Design Challenges for End Effector Fingertips: Designing customized fingertips for
the end effector (EE) posed several challenges due to the need to interact with both rigid
and flexible components:

39

CHAPTER 4. SYSTEM DESIGN AND DEVELOPMENT

– Dual Interaction Requirements: The fingertips needed to handle rigid objects,
such as connectors, and flexible components like Ethernet cables. The design had to
accommodate these diverse requirements while ensuring precise manipulation.

– Grip Stability for Flexible Components: Ensuring a secure grip on the flexible
cable was particularly challenging. The fingertips were designed with grooves and a
textured surface to prevent slippage and allow for precise control without damaging
the cable.

– Size and Compatibility Constraints: The fingertips had to be compact enough
to handle small components while maintaining sufficient contact area for stability.
Multiple iterations were conducted to optimize the dimensions and functionality.

– Integration with the End Effector: The fingertips were designed to attach seam-
lessly to the EE, ensuring quick replacements and modularity for future adjustments
or tasks.

4.4 Software Architecture and Communication

The software architecture of the robotic system was designed to ensure robust communication
and seamless integration of hardware components. The system leverages the Robot Operating
System (ROS) as middleware, providing modularity, scalability, and real-time communication
between sensors, actuators, and control algorithms. This section describes the main components
of the software architecture and their role in enabling autonomous manipulation.

4.4.1 ROS Node Management

The implemented ROS architecture of the robotic manipulation system is organized into multiple
nodes, each responsible for specific tasks. These nodes interact through ROS topics, services, and
actions to ensure seamless integration between sensing, control, and motion execution. Figure
B.1 in the Appendix B illustrates the entire ROS node graph used in this project.

The main nodes utilized in the system are detailed below:

1. gazebo gui: This node is part of the Gazebo simulator and provides a graphical interface
for monitoring and interacting with the simulated environment. It is essential for testing
the system in a virtual setup before deployment on real hardware.

2. fr3 gripper spawner: This node handles the initialization and management of the robotic
gripper. It ensures proper synchronization between the robot’s end effector and the gripper,
allowing for precise control during manipulation tasks.

3. motion AS: This Action Server node manages the execution of planned trajectories based
on the DHB model. It communicates with Behavior Tree (BT) nodes to execute high-level
tasks such as grasping, placing, and manipulating objects.

4. camera link broadcaster: This node broadcasts the transformations (TFs) between the
camera’s reference frame and the robot’s base frame. These transformations ensure spa-
tial consistency for visual data and facilitate accurate object localization and trajectory
planning.

5. arucos detection: Dedicated to detecting Aruco markers, this node identifies the position
and orientation of objects and tools on the modular assembly board. The detected data is
used for object tracking and manipulation.

40

4.4. SOFTWARE ARCHITECTURE AND COMMUNICATION

6. trajectory cartesian impedance controller/follow cartesian trajectory: This node
implements Cartesian impedance control to execute planned trajectories while maintaining
compliance and safety during interactions with the environment.

7. camera/realsense2 camera manager: This node manages the Intel RealSense depth cam-
era, handling the acquisition of RGB and depth images. The visual data is used for object
detection, pose estimation, and workspace mapping.

8. joint state publisher: This node publishes the states of the robot’s joints, including
angles, velocities, and effort, providing real-time feedback for both simulation and real
hardware.

9. robot state publisher: This node publishes the robot’s state, including the forward
kinematics information, based on the joint states. It ensures that the system has an updated
representation of the robot’s pose in the workspace.

10. franka state controller: This node handles the Franka Emika Panda’s state manage-
ment, publishing information such as the robot’s pose, joint states, and measured forces.
It acts as a critical interface between the hardware and the software system.

11. trajectory cartesian impedance controller/cartesian trajectory goal: A client node
responsible for sending Cartesian trajectory goals to the impedance controller, ensuring
smooth and precise motion execution.

12. tf static: This node publishes static transformations between the various reference frames
in the system, ensuring a consistent spatial reference during operation.

Interaction and Data Flow: Each node interacts through predefined ROS topics, services,
or actions, as visualized in the node graph. For example:

• /camera/realsense2 camera manager publish data on topics like /camera/depth/image color,
which are subscribed to by /arucos detection for object detection and localization, as
the cable connector.

• The /motion AS node communicates with Behavior Tree nodes to execute high-level ma-
nipulation tasks.

• Transformation nodes like /camera link broadcaster ensure consistency across reference
frames, enabling seamless integration between vision, planning, and execution layers.

Visual Representation: To better understand the interactions between these nodes, the full
ROS node graph is included in Appendix B. The graph provides a comprehensive overview of
all nodes, topics, and their interconnections, showcasing the complexity and modularity of the
system.

By structuring the ROS architecture in this manner, the system achieves robust communica-
tion, scalability, and adaptability, ensuring its effectiveness in real-world applications.

41

CHAPTER 4. SYSTEM DESIGN AND DEVELOPMENT

42

Chapter 5

Experimental Method

5.1 Introduction

This chapter describes the comprehensive approach adopted to evaluate the capabilities of the
proposed robotic manipulation system in diverse scenarios. This involves a structured method-
ology encompassing the setup, execution, and analysis phases to systematically validate the
system’s performance.

The experiments focus on assessing the system’s ability to autonomously manipulate both
rigid and deformable objects, specifically targeting assembly and disassembly tasks. Key aspects
of this evaluation include the calibration of the workspace, recording and processing of demon-
stration trajectories, and execution of predefined tasks using an adaptive robotic framework.

In this chapter, the experimental setup is detailed, highlighting the physical configuration of
the workspace and test scenarios designed to challenge the robot’s adaptability and precision.
Following this, the procedure for trajectory recording and processing is outlined, utilizing kines-
thetic demonstrations and invariant transformations to ensure robust trajectory planning and
execution. Finally, the execution phase is elaborated, including task-specific strategies, system
initialization, and error handling, with an emphasis on collecting and analyzing key performance
metrics.

5.2 Experimental Setup

The experimental setup was designed to evaluate the manipulation capability of the robotic
system and the feasibility of successful assembly and disassembly tasks. This section describes
the physical configuration of the workspace and the different test scenarios developed for the
evaluation phase.

5.2.1 Configuration of the Environment

This section describes the physical setup and configuration of the environment in which the
robotic manipulation experiments were conducted. The organization and use of the hardware
components and supplementary tools, previously listed in Table 3.1, are detailed below.

The experiments were conducted in a controlled environment to minimise external variables,
such as lighting, and ensure repeatability.

The physical configuration of the experimental setup consists of two main subsystems: the
”assembly board system” and the ”robotic arm system”. These are composed of various elements.

43

CHAPTER 5. EXPERIMENTAL METHOD

Figure 5.1: Experimental setup showing the robotic arm system (left), camera view (top center),
and the assembly board system with cable manipulation configuration (right).

Assembly Board System The assembly board is positioned at the center of the workspace,
mounted on four supports equipped with anti-slip rubber bearings to ensure stability, and fitted
with four Aruco markers to define its position in space relative to the base frame of the robotic
arm.

On top of the board, 3D-printed elements and the Ethernet cable, with which the robotic
arm will interact, are placed according to a specific configuration.

Robotic Arm System

The FEP is positioned next to the board, with the ability to reach all areas to perform manipu-
lation tasks. The camera is mounted, using a dedicated support, directly above the EE frame, in
an Eye-on-Hand configuration. This setup provides precise visual feedback of the first subsystem.

The environment is calibrated to align the coordinate systems of the camera, the board,
the connector, and the robotic arm, creating a unified system in which spatial coordinates are
consistent across all components.

5.2.2 Test Scenarios

During the experimental phase, two main test scenarios were developed and analyzed to evaluate
the capabilities of the robotic system. These scenarios focus on specific tasks and the flexibility
of the experimental setup.

1. Clip Task:

• Objective: Validate the manipulation procedure for one of the tools on the board,
referred to as the ”clip,” which required a complex sequence of operations, including
opening and closing the tool and inserting the Ethernet cable into it.

44

5.2. EXPERIMENTAL SETUP

Figure 5.2: Top view of the board with the configuration and all the steps used for the Clip Task.

• Setup: The robot had to precisely execute the following steps:

(a) Perform an initial trajectory called ”Look” to obtain a complete view of the board.

(b) Detect the clip on the board using Aruco markers placed on the board.

(c) Detect the position and orientation of the cable relative to the robot’s base frame
through color and shape detection.

(d) Approach and grasp the connector.

(e) Insert the Ethernet cable into the open clip.

(f) Close the clip.

(g) Start the clip-opening procedure using a series of trajectories.

(h) Perform the ”Look” trajectory again to verify the correct pose of the connector
once the tool was unlocked, completing the operation.

This scenario was chosen to test the system’s ability to perform delicate and precise
manipulations on objects with movable parts.

• Adopted Configuration: Figure 5.2 shows a top view of the board with the configura-
tion used for this scenario.

2. Complete Path Based on NIST Setup:

• Objective: Attempt to complete a full path inspired by the setups proposed by NIST,
which included the use of multiple tools on the board.

• Setup: The path consisted of sequential tasks simulating a complete route on one of
the NIST boards, starting from an initial point and guiding the cable to the endpoint
through the tools positioned along the path. Although the test was not completed, the
initial operations demonstrated the system’s adaptability in handling different tools.

• Adopted Configuration: Figure 5.3 shows a top view of the board with the configura-
tion used for the NIST-inspired path.

3. Flexibility Test of the Board and Object Placement:

45

CHAPTER 5. EXPERIMENTAL METHOD

Figure 5.3: Top view of the board with the configuration and all the steps used for the fist part
of the Complete Path based on the NIST Setup.

• Objective: Test the flexibility of the manipulation procedure by repositioning objects
on the board and adopting different configurations, including changing the position
and orientation of the board relative to the robot’s base frame. This latter modification
was also useful for finding a configuration that avoided limitations caused by the robot
arm’s joint constraints.

• Setup: The objects and tools on the board were repositioned multiple times to explore:

– The robot’s ability to adapt to different configurations.

– The possibility of avoiding limitations caused by the robot’s joint constraints,
ensuring smooth and collision-free movements.

This scenario allowed for the evaluation of the effectiveness of calculated and gener-
alized trajectories and the robustness of the system calibration.

5.3 Experimental Procedure

The experimental procedure was designed to systematically evaluate the performance of the
robotic system in the defined test scenarios. This section describes the approach followed during
the experiments to ensure consistency and repeatability, starting with the trajectory recording
phase and ending with the execution of the target task.

5.3.1 Preparation Phase

The first phase consists of preparatory steps to ensure the system was calibrated, remained
consistent during the subsequent phases, and ready for operation:

• Workspace Preparation: The board and all tools were arranged according to the test
scenario, with the positioning of objects and tools adjusted to align with the system’s field
of view and reachability, following the pattern to be tested.

• Calibration:

46

5.3. EXPERIMENTAL PROCEDURE

1. The camera coordinate system was aligned with the robot’s base frame using hand-eye
calibration techniques.

2. Aruco markers were detected and employed to define the reference frame
of the board, ensuring consistent spatial alignment with the robot base.
However, these markers were not utilized in the final tests; instead, rigid
objects, such as the 3D-printed components on the board, were directly
defined through their coordinates in the code.

• Test Environment Control: Lighting conditions and external variables were stabilized
to minimize noise in visual data. Additionally, the board was secured to prevent movement
during interactions with the robot or the user.

5.3.2 Trajectory Recording and Processing Phase

The trajectory recording phase employed the Kinesthetic Demonstration technique, described in
Chapter 2, Theoretical Foundations, subsection 2.2.1. In this approach, the robot was physically
guided by a human operator to follow the desired trajectory. This method allowed the necessary
data to be directly acquired from the robot’s system, recording the sequence in a ROS bag file.

This phase was divided into the following sub-phases:

• Trajectory Acquisition:

– The robot was manually guided to execute the desired movements using the Kines-
thetic Demonstration technique.

– During this procedure, data related to the pose, linear velocity, angular velocity, force,
moment, and time of the end effector (EE) were recorded in ROS bag files.

– The recording included key topics related to the robot’s state (/franka state controller/O T EE

and /franka state controller/O T EE vel), ensuring all necessary information for
subsequent processing was captured.

• Filtering and Pre-Processing:

– Acquired data for linear and angular velocities were filtered using a moving average
window to reduce noise and enhance stability.

– Temporal data were normalized to ensure uniform time alignment, starting from the
defined starting point (start point).

– The filtered trajectories were saved in npz format, enabling more efficient and flexible
management during subsequent processing stages.

• Transformation into Invariant Space:

– The trajectories were processed using the Denavit-Hartenberg-inspired bidirectional
model (DHB), transforming them into an invariant space.

– This transformation allowed the trajectories to be represented independently of ro-
tations, translations, and temporal variations, providing a robust and generalizable
representation.

– The invariant variables (I) and initial parameters (Hv0 and Hw0) were computed
using the computeDHB function.

• Trajectory Generalization and Reconstruction:

47

CHAPTER 5. EXPERIMENTAL METHOD

– Trajectories were generalized to adapt to new task requirements, such as varying start
and goal positions. Using the trajectory generalization function, the recorded
trajectory was scaled and rotated to align with new conditions, maintaining the overall
shape and structure of the original trajectory.

– This step proved particularly useful during cable detection scenarios, where the po-
sition and orientation of the cable varied. The trajectory was adapted dynamically,
ensuring precise alignment of the robot’s movements with the cable’s detected pose.

– For orientation generalization, quaternions were converted into Euler angles to apply
scaling factors. The generalized orientations were then reconstructed into quaternions
to maintain compatibility with robotic motion planners.

– Reconstructed trajectories were verified to ensure consistency with the generalized
goal and the original trajectory data.

Data Visualization and Analysis

During the processing phase, visualizations were generated to analyze the trajectories and com-
pare the original data with the generalized and reconstructed results:

• Filtered linear and angular velocities were compared to their reconstructed counterparts to
evaluate the accuracy of the DHB model and generalization process.

• Calculated invariant variables were graphed to observe their stability and behavior during
the trajectories.

• Generalized positions and orientations were visualized to confirm alignment with the new
start and goal conditions.

Saving Results

The final results, including invariant variables, initial parameters (Hv0, Hw0), positions, orienta-
tions, and generalized trajectories, were saved in npz format for future use, ensuring quick access
during the execution phase.

5.3.3 Execution Phase

Each experiment followed a structured approach to ensure systematic evaluation. The entire
process involved simultaneously running two main files: a launch file to initiate the ROS nodes
and Action Server, and a Python script to execute the Behavior Tree (BT) specific to the task.

1. System Initialization: The system was configured and started using a launch file, which
performed the following tasks:

• Configured the robot for use in simulation or on real hardware, based on the use sim

parameter.

• Launched the Action Server (dhb action server.py), responsible for executing the
trajectories requested by the BT.

• Activated the detection pipeline through the detection pipeline.launch file to
identify objects and markers in the scene.

• (Optional) Recorded experimental data in bag files if the record parameter was set
to true.

48

5.4. RESULTS AND OBSERVATIONS

2. Launching the Behavior Tree: In parallel, the BT specific to the task was launched
(e.g., Clip seq for executing the ”clip” task, as introduced in subsection 5.2.2). This BT
orchestrated the sequence of actions needed to complete the task, using ROS nodes to
interact with the robot and gripper.

3. Trajectory Initialization: Before executing the task, the robot performed a preliminary
trajectory called Look to scan the board and collect initial data. This trajectory was a
prerequisite for every test. During this phase, the system:

• Identified the position and orientation of tools using Aruco markers.

• Located the Ethernet cable using color and shape detection.

4. Task Execution: The BT orchestrated the sequence of actions to complete the task,
interacting with the Action Server to execute the trajectories. During this phase, the
operator monitored the robot (in case of real hardware execution) and the scene viewed
from the EE-mounted camera, as issues or errors in trajectory generation could arise.

5. Data Collection: During execution, key metrics were recorded, such as:

• Execution time for each task.

• Positional accuracy during manipulations.

• Success rate of operations (e.g., correct clip closure), noted manually by testing the
task multiple times.

6. Error Management: In case of errors, such as missed detections or collisions, the system
or the user:

• Stopped the current execution.

• Provided feedback to adjust parameters or the setup.

• Restarted the task to repeat the operation.

5.3.4 Post-Experiment Analysis

Once the experiments were completed, the data collected in each scenario were analyzed to
evaluate the system’s performance:

• Trajectory Review: Recorded trajectories were analyzed for smoothness, stability, and
adaptability to changes.

• Error Analysis: Failure points were examined to identify possible improvements in object
detection, trajectory planning, or execution.

5.4 Results and Observations

5.4.1 Validation of Individual Modules

Perception

The perception module, while not the primary focus of this thesis, played a fundamental role in
enabling the detection and localization of the cable connector for subsequent manipulation tasks.
Following a careful analysis of the problem and the various options available in the literature,

49

CHAPTER 5. EXPERIMENTAL METHOD

a custom implementation was developed, combining color and shape detection, and validated
through iterative testing. While this approach does not introduce innovative methodologies
compared to state-of-the-art solutions discussed in Chapter 1, it was tailored to meet the prac-
tical requirements of the project, offering a compromise between simplicity, effectiveness, and
robustness.

Results with Color and Shape Detection The implemented perception pipeline, based
on HSV color segmentation and shape analysis, demonstrated sufficient stability and reliability
across all test scenarios. The key observations from the iterative tests are summarized as follows:

• Detection Stability: The system consistently detected the connector’s position and ori-
entation with high stability, even in scenarios involving partial occlusions (up to 30%-40%
of the connector’s area, provided the end of the connector remained visible) or when the
camera approached the connector at very close distances (less than 30 cm).

• Real-Time Performance: The detection algorithm operated in real-time, providing con-
tinuous feedback without significant delays, which was essential for ensuring smooth inte-
gration with the robotic manipulation framework. It should be noted that the connector
was not moved during the execution phase, as the project’s goal did not involve handling
highly dynamic conditions where objects on the board are moved in real-time.

• Variability Handling: The pipeline effectively managed variability in the connector’s
position, orientation, and partial occlusions, making it suitable for the dynamic nature of
the experimental environment.

• Practical Effectiveness: Although not innovative, the approach proved sufficient to reli-
ably detect the connector under controlled conditions, meeting the specific requirements of
the project without the need for additional hardware or complex computational resources.

A key strength of the approach was its resilience to common error modes in perception tasks.
For example:

• Detection was unaffected by slight variations in lighting conditions, as the color thresholds
were iteratively calibrated to ensure robustness.

• Proximity effects, such as when the camera was too close to the connector, did not result
in positional loss or instability, as the system was programmed to retain the last detected
position of the connector before losing detection.

Comparison and Discussion While the implemented solution lacks the complexity of ad-
vanced methods in the literature, such as deep learning-based object detection or hybrid ap-
proaches combining color, shape, and feature tracking, it aligns well with the project objectives.
Specifically:

• Advanced methods, while offering greater generalization and accuracy, often require exten-
sive training data, high computational resources, and prolonged setup times, which were
not feasible given the project constraints.

• The chosen implementation provided a lightweight, efficient, and sufficient solution, tailored
for detecting a single object (the Ethernet cable connector) in a controlled experimental
environment.

50

5.4. RESULTS AND OBSERVATIONS

DHB-Based Goal Estimation

The DHB-based framework is at the core of this project, as the approach presented in the paper
”A Bidirectional Invariant Representation of Motion for Gesture Recognition and Reproduc-
tion” [20][21], has been fundamental in ensuring accurate and robust goal estimation for various
recorded and reconstructed trajectories required for task execution. By transforming the trajec-
tories into an invariant space, the model delivered consistent performance across varying initial
conditions and spatial configurations. This section presents the results of the DHB-based goal es-
timation process, highlighting its precision, generalization capability, and robustness in different
scenarios.

Positional and Orientational Accuracy The DHB model achieved high positional and
orientational accuracy in estimating target poses. The main findings include:

• Positional Accuracy: The deviation between estimated and actual goal positions con-
sistently remained within ±2mm, demonstrating reliable precision for cable manipulation
tasks.

• Orientational Accuracy: Orientation errors, measured in Euler angles, remained below
±1◦, ensuring the connector was correctly aligned for grasping and insertion operations.

It should be noted that these uncertainties arise during the trajectory generalization phase, not
from the application of the DHB approach. After reconstructing trajectories from the invariant
space, the DHB model exhibited negligible error.

Comparison Between Original and Generalized Trajectories Trajectory generalization
occurs after reconstructing the original trajectories from the invariant space using the DHB
model. This process allows trajectories to adapt to new start and goal configurations while
preserving the overall motion structure. The adaptation is achieved through simple scaling or
extension of the original trajectory, ensuring the shape remains consistent with the original
kinematic and dynamic characteristics.

• Shape Preservation: The generalization, based on scaling and rotations of the original
trajectory, preserved the overall shape of the movement. This result highlights the DHB
model’s ability to adapt trajectories to new contexts without altering the fundamental
motion characteristics.

• Adaptability to Variations: The algorithm demonstrated high flexibility, successfully
adapting trajectories to various start and goal configurations. Specifically, it managed cases
involving system rotations, scaling variations in trajectory length, and significant changes
in initial and final positions.

A crucial aspect of the process was maintaining stability and robustness even with significant
adaptations. Generalization ensured the resulting trajectory conformed to the new geometric
constraints without introducing instability or unwanted alterations. However, in situations close
to the robot’s kinematic singularities, slight oscillations were observed in the generalized trajec-
tory, suggesting a need for further refinement of the transformation parameters. For this reason,
the board’s position was occasionally adjusted, as it was either too close to or too far from the
robot’s base.

51

CHAPTER 5. EXPERIMENTAL METHOD

5.4.2 Framework Performance in Task Execution

The framework evaluation was conducted by examining the system’s ability to complete various
tasks inspired by the benchmarks proposed by NIST. This section analyzes the successes achieved,
the limitations encountered, and possible solutions to overcome the obstacles identified during
testing.

Clip Task: Complete Success This task involved inserting the cable into the clip, closing
it, opening it, and subsequently removing the cable. It was successfully completed in all stages:

• The system accurately handled cable insertion into the clip, maintaining stability even
during contact.

• The clip’s closure was achieved without errors, thanks to well-defined trajectories and
proper calibration of the perception system.

• The inverse process, i.e., opening the clip and removing the cable, was also completed
without issues, demonstrating the framework’s robustness for relatively simple and well-
structured tasks.

Complete Path: Task Incomplete This task required passing the cable through a complex
path involving multiple tools. It could not be completed due to several limitations:

• Challenges with Cable Nature: The cable’s deformability introduced instability during
positioning, with unpredictable tensions making precise control difficult.

• Kinematic Limits of the Robotic Arm: Despite attempts to reposition the board and
objects, the required configurations often caused the arm to reach its mechanical limits,
preventing smooth execution of certain trajectories.

• Complexity of Required Movements: The need to perform complex movements, such
as inserting and removing the cable from multiple clips with varying orientations, exceeded
the current system’s capabilities.

Improvement Proposals

Configuration with Two Robotic Arms A configuration with two robotic arms could
significantly enhance the system’s capabilities:

• Coordinated Manipulation: Two robotic arms would enable coordinated cable manip-
ulation, offering better tension management and greater stability during tasks.

• Increased Flexibility: The use of two arms would reduce the need for reaching kinemat-
ically unfavorable configurations.

Integration of an Advanced Perception System The adoption of an advanced perception
system could improve the understanding of the cable’s body:

• 3D Models of the Cable’s Body: Using real-time 3D reconstruction techniques would
allow monitoring the entire cable configuration.

• Additional Sensors: Integrating tactile sensors along the robotic arm’s body could pro-
vide more detailed feedback during manipulation.

52

5.4. RESULTS AND OBSERVATIONS

Final Observations

While the Clip Task demonstrated the framework’s effectiveness in simpler tasks, the failure of
the Complete Path highlighted the need for further improvements. Specifically:

• The complexity of tasks based on NIST benchmarks requires a combination of hardware
solutions (e.g., multi-arm configurations) and software solutions (e.g., advanced perception
algorithms).

• The developed framework provides a solid foundation for further developments, delivering
promising results in robotic manipulation tasks with less complex requirements.

53

CHAPTER 5. EXPERIMENTAL METHOD

54

Conclusions

This research focused on designing and validating a framework for robotic manipulation capable
of addressing complex assembly tasks involving both rigid and deformable objects. At the core
of the project was the DHB-based invariant representation model, which enabled the transfor-
mation of motion trajectories into a generalizable space, ensuring robustness and consistency
even under varying conditions. This methodology allowed for the planning of precise and flexi-
ble trajectories, adaptable to different configurations without compromising the integrity of the
original movements.

A critical component was the perception module, developed to identify and localize the cable
connector used in the tests. Despite being based on a relatively simple approach that combined
color and shape detection, the system proved reliable enough to operate in controlled conditions.
While it did not introduce innovations compared to advanced methods in the literature, the
adopted solution fully met the practical needs of the project, ensuring stability even in challenging
scenarios such as partial occlusions or close-up views of the connector.

The experiments highlighted the potential of the developed framework while also reveal-
ing some intrinsic limitations. The system demonstrated reliability and robustness in handling
structured tasks with relatively simple requirements, confirming the effectiveness of the chosen
approach. However, significant challenges arose in scenarios demanding greater flexibility, such
as managing deformable objects or performing particularly complex movements. These chal-
lenges emphasized the need to explore alternative solutions, such as more advanced hardware
configurations or sophisticated perception systems, to successfully address more intricate and
dynamic scenarios.

The DHB model proved to be a promising foundation for robotic manipulation applications,
thanks to its ability to adapt trajectories to new conditions without the need for complex re-
calibrations. Nonetheless, improvements are required to handle more dynamic and demanding
scenarios. Potential enhancements include integrating tactile sensors or employing real-time
3D reconstruction techniques, which could significantly improve the system’s ability to manage
deformable objects and complex movements.

In conclusion, this work represents a significant step toward developing robotic manipulation
systems that are modular, adaptable, and capable of balancing simplicity and efficiency. While
some limitations emerged, the results provide a solid foundation for further developments and
refinements. This research not only broadens the technical possibilities of robotic systems but also
underscores the value of practical and well-considered solutions to address real-world challenges.
It is a forward-looking contribution, laying the groundwork for a new generation of robots that
are more versatile and aware of the complexities of the environments in which they operate.

55

CONCLUSIONS

56

57

APPENDIX A. 3D-PRINTED TOOLS FOR THE CUSTOM ASSEMBLY BOARD

Appendix A

3D-Printed Tools for the Custom
Assembly Board

Tool Name Description and Technical Specifications Image
Aruco Base A square plate designed to hold Aruco markers,

positioned at the corners of the board.
-

Cable Holder A cylindrical block with a V-shaped opening to se-
cure the cable in place, facilitating easy insertion.

Clip A flexible tool with a hinge mechanism that allows
the cable to be inserted and securely fixed inside.

Ethernet Housing A socket designed to hold the Ethernet connector
securely during manipulation.

Tube A hollow parallelepiped structure through which
the cable is inserted on one side and exits on the
other.

T-Bracket A complex tower-like structure with a vertical tube
mounted on top, allowing the cable to be inserted
from above and exit downward.

58

Appendix B

ROS Node Graph

Figure B.1: Complete ROS node graph used in the project. The graph illustrates the interactions
and data flow between perception, control, and communication nodes.

59

APPENDIX B. ROS NODE GRAPH

60

Bibliography

[1] Fares Abu-Dakka et al. “Dynamic Movement Primitives in Robotics: A Tutorial Survey”.
In: arXiv preprint arXiv:2102.03861 (2021). url: https://ar5iv.org/abs/2102.03861.

[2] Paul Bakker and Yasuo Kuniyoshi. “Robot See, Robot Do : An Overview of Robot Imita-
tion”. In: AISB96 Workshop on Learning in Robots and Animals (May 1996).

[3] Aude Billard and Danica Kragic. “Trends and Challenges in Robot Manipulation”. In:
Science 364.6446 (2019), eaat8414. doi: 10.1126/science.aat8414.

[4] Júlia Borràs et al. “The KIT Swiss Knife Gripper for Disassembly Tasks: A Multi-Functional
Gripper for Bimanual Manipulation with a Single Arm”. In: 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2018, pp. 4590–4597. doi:
10.1109/IROS.2018.8593567.

[5] Roger Bostelman and Joseph Falco. Survey of Industrial Manipulation Technologies for
Autonomous Assembly Applications. en. 2012-03-16 2012. doi: https://doi.org/10.
6028/NIST.IR.7844.

[6] Alessio Caporali, Kevin Galassi, and Gianluca Palli. “Deformable Linear Objects 3D Shape
Estimation and Tracking From Multiple 2D Views”. In: IEEE Robotics and Automation
Letters 8.6 (2023), pp. 3852–3859. doi: 10.1109/LRA.2023.3273518.

[7] Alessio Caporali et al. “A Weakly Supervised Semi-Automatic Image Labeling Approach
for Deformable Linear Objects”. In: IEEE Robotics and Automation Letters 8.2 (2023),
pp. 1013–1020. doi: 10.1109/LRA.2023.3234799.

[8] Alessio Caporali et al. “Deformable Linear Objects Manipulation With Online Model Pa-
rameters Estimation”. In: IEEE Robotics and Automation Letters 9.3 (2024), pp. 2598–
2605. doi: 10.1109/LRA.2024.3357310.

[9] Alessio Caporali et al. “RT-DLO: Real-Time Deformable Linear Objects Instance Segmen-
tation”. In: IEEE Transactions on Industrial Informatics 19.11 (2023), pp. 11333–11342.
doi: 10.1109/TII.2023.3245641.

[10] Peng Chang and Taskin Padir. Model-Based Manipulation of Linear Flexible Objects with
Visual Curvature Feedback. 2020. arXiv: 2007.08083 [cs.RO]. url: https://arxiv.org/
abs/2007.08083.

[11] K Chen, W Zhang, et al. “Robotic peg-in-hole assembly based on reversible dynamic move-
ment primitives and trajectory optimization”. In: IEEE Robotics and Automation Letters
5 (2020), pp. 500–507. doi: 10.1109/LRA.2020.2975767.

[12] Andrew Choi et al. “mBEST: Realtime Deformable Linear Object Detection Through
Minimal Bending Energy Skeleton Pixel Traversals”. In: IEEE Robotics and Automation
Letters 8.8 (Aug. 2023), pp. 4863–4870. issn: 2377-3774. doi: 10.1109/lra.2023.3290419.
url: http://dx.doi.org/10.1109/LRA.2023.3290419.

61

https://ar5iv.org/abs/2102.03861
https://doi.org/10.1126/science.aat8414
https://doi.org/10.1109/IROS.2018.8593567
https://doi.org/https://doi.org/10.6028/NIST.IR.7844
https://doi.org/https://doi.org/10.6028/NIST.IR.7844
https://doi.org/10.1109/LRA.2023.3273518
https://doi.org/10.1109/LRA.2023.3234799
https://doi.org/10.1109/LRA.2024.3357310
https://doi.org/10.1109/TII.2023.3245641
https://arxiv.org/abs/2007.08083
https://arxiv.org/abs/2007.08083
https://arxiv.org/abs/2007.08083
https://doi.org/10.1109/LRA.2020.2975767
https://doi.org/10.1109/lra.2023.3290419
http://dx.doi.org/10.1109/LRA.2023.3290419

BIBLIOGRAPHY

[13] Michele Colledanchise and Petter Ögren. “Behavior Trees in Robotics: A Survey”. In: IEEE
Transactions on Robotics 34.6 (2018), pp. 1230–1240. doi: 10.1109/TRO.2018.2853726.

[14] Michele Colledanchise and Petter Ögren. “Behavior Trees in Robotics: A Survey”. In: IEEE
Transactions on Robotics 34.6 (2018), pp. 1230–1240. doi: 10.1109/TRO.2018.2853726.

[15] Ravinder Dahiya and Maurizio Valle. “Tactile Sensing for Robotic Applications”. In: Sen-
sors 13.7 (2013), pp. 9182–9206. doi: 10.3390/s130709182.

[16] Kevin Galassi, Alessio Caporali, and Gianluca Palli. “Cable Detection and Manipulation for
DLO-in-Hole Assembly Tasks”. In: 2022 IEEE 5th International Conference on Industrial
Cyber-Physical Systems (ICPS). 2022, pp. 01–06. doi: 10.1109/ICPS51978.2022.9817006.

[17] Seth Hutchinson, Greg Hager, and Peter Corke. “A Tutorial on Visual Servo Control”. In:
IEEE Transactions on Robotics and Automation 12.5 (1996), pp. 651–670. doi: 10.1109/
70.538972.

[18] Shiyu Jin et al. “Robotic Cable Routing with Spatial Representation”. In: IEEE Robotics
and Automation Letters 7.2 (2022), pp. 5687–5694. doi: 10.1109/LRA.2022.3158377.

[19] Azarakhsh Keipour et al. Detection and Physical Interaction with Deformable Linear Ob-
jects. 2023. arXiv: 2205.08041 [cs.RO].

[20] Dongheui Lee, Raffaele Soloperto, and Matteo Saveriano. “Bidirectional Invariant Repre-
sentation of Rigid Body Motions and its Application to Gesture Recognition and Repro-
duction”. In: Autonomous Robots 42 (Jan. 2018), pp. 1–21. doi: 10.1007/s10514-017-
9645-x.

[21] Dongheui Lee, Raffaele Soloperto, and Matteo Saveriano. “Bidirectional Invariant Repre-
sentation of Rigid Body Motions and its Application to Gesture Recognition and Repro-
duction”. In: Autonomous Robots 42 (Jan. 2018), pp. 1–21. doi: 10.1007/s10514-017-
9645-x.

[22] Y. Li, X. Huang, et al. “Towards Reversible Dynamic Movement Primitives”. In: Journal
of Advanced Robotics (2021), pp. 237–246. doi: 10.1109/JAR.2021.2976765.

[23] Naijing Lv, Jianhua Liu, and Yunyi Jia. “Dynamic Modeling and Control of Deformable
Linear Objects for Single-Arm and Dual-Arm Robot Manipulations”. In: IEEE Transac-
tions on Robotics 38.4 (2022), pp. 2341–2353. doi: 10.1109/TRO.2021.3139838.

[24] Julian Michels, Michele Colledanchise, and Petter Ögren. Behavior Trees in Robotics and
AI: An Introduction. CreateSpace Independent Publishing Platform, 2018.

[25] Julian Michels et al. Behavior Trees in Robotics and AI: An Introduction. CreateSpace
Independent Publishing Platform, 2018.

[26] Manfred Morari and Jay H. Lee. “Model Predictive Control: Past, Present and Future”.
In: Computers & Chemical Engineering 23.4–5 (1999), pp. 667–682. doi: 10.1016/S0098-
1354(98)00301-9.

[27] National Institute of Standards and Technology. Robotic Grasping and Manipulation As-
sembly - Assembly Tasks Board. https://www.nist.gov/el/intelligent-systems-
division- 73500/robotic- grasping- and- manipulation- assembly/assembly. Ac-
cessed: 2024-10-03. 2023.

[28] Antonis Paraschos et al. “A Reversible Dynamic Movement Primitive Formulation”. In:
Proceedings of the 31st International Conference on Machine Learning (ICML-14) (2014),
pp. 1507–1515.

62

https://doi.org/10.1109/TRO.2018.2853726
https://doi.org/10.1109/TRO.2018.2853726
https://doi.org/10.3390/s130709182
https://doi.org/10.1109/ICPS51978.2022.9817006
https://doi.org/10.1109/70.538972
https://doi.org/10.1109/70.538972
https://doi.org/10.1109/LRA.2022.3158377
https://arxiv.org/abs/2205.08041
https://doi.org/10.1007/s10514-017-9645-x
https://doi.org/10.1007/s10514-017-9645-x
https://doi.org/10.1007/s10514-017-9645-x
https://doi.org/10.1007/s10514-017-9645-x
https://doi.org/10.1109/JAR.2021.2976765
https://doi.org/10.1109/TRO.2021.3139838
https://doi.org/10.1016/S0098-1354(98)00301-9
https://doi.org/10.1016/S0098-1354(98)00301-9
https://www.nist.gov/el/intelligent-systems-division-73500/robotic-grasping-and-manipulation-assembly/assembly
https://www.nist.gov/el/intelligent-systems-division-73500/robotic-grasping-and-manipulation-assembly/assembly

BIBLIOGRAPHY

[29] Lawrence R. Rabiner. “A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition”. In: Proceedings of the IEEE 77.2 (1989), pp. 257–286. doi: 10.
1109/5.18626.

[30] Cen Rao, Mubarak Shah, and Tanveer Syeda-Mahmood. “Action Recognition based on
View Invariant Spatio-temporal Analysis”. In: Computer Vision Lab, University of Central
Florida (2003).

[31] Cen Rao, Alper Yilmaz, and Mubarak Shah. “View-Invariant Representation and Recog-
nition of Actions”. In: International Journal of Computer Vision 50.2 (2002), pp. 203–
226.

[32] Harish chaandar Ravichandar et al. “Recent Advances in Robot Learning from Demonstra-
tion”. In: Annu. Rev. Control. Robotics Auton. Syst. 3 (2020), pp. 297–330. url: https:
//api.semanticscholar.org/CorpusID:208958394.

[33] Stefan Schaal, Auke Jan Ijspeert, and Aude Billard. “Dynamical movement primitives:
Learning attractor models for motor behaviors”. In: Neural computation 25.2 (2003),
pp. 328–373.

[34] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press,
2005. isbn: 978-0262201629.

[35] Maxim Vochten, Tinne De Laet, and Joris De Schutter. “Robust Optimization-Based Cal-
culation of Invariant Trajectory Representations for Point and Rigid-body Motion”. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018,
pp. 5598–5605. doi: 10.1109/IROS.2018.8593540.

[36] Isaac Weiss. Geometric Invariants and Object Recognition. Tech. rep. CS-TR-2942. Spon-
sored by Office of Naval Research, Defense Advanced Research Projects Agency. Center
for Automation Research, University of Maryland, 1992.

[37] Yuxuan Yang, Johannes A. Stork, and Todor Stoyanov. “Learning differentiable dynam-
ics models for shape control of deformable linear objects”. In: Robotics and Autonomous
Systems 158 (2022), p. 104258. issn: 0921-8890. doi: https://doi.org/10.1016/j.
robot.2022.104258. url: https://www.sciencedirect.com/science/article/pii/
S0921889022001518.

[38] Mingrui Yu et al. “Global Model Learning for Large Deformation Control of Elastic De-
formable Linear Objects: An Efficient and Adaptive Approach”. In: IEEE Transactions on
Robotics 39.1 (2023), pp. 417–436. doi: 10.1109/TRO.2022.3200546.

[39] Zuyuan Zhu and Huosheng Hu. “Robot Learning from Demonstration in Robotic Assembly:
A Survey”. In: Robotics 7.2 (2018). issn: 2218-6581. doi: 10.3390/robotics7020017. url:
https://www.mdpi.com/2218-6581/7/2/17.

63

https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
https://api.semanticscholar.org/CorpusID:208958394
https://api.semanticscholar.org/CorpusID:208958394
https://doi.org/10.1109/IROS.2018.8593540
https://doi.org/https://doi.org/10.1016/j.robot.2022.104258
https://doi.org/https://doi.org/10.1016/j.robot.2022.104258
https://www.sciencedirect.com/science/article/pii/S0921889022001518
https://www.sciencedirect.com/science/article/pii/S0921889022001518
https://doi.org/10.1109/TRO.2022.3200546
https://doi.org/10.3390/robotics7020017
https://www.mdpi.com/2218-6581/7/2/17

BIBLIOGRAPHY

64

List of Figures

2.1 . 10
2.2 The three main phases in imitation . 10

3.1 Modular assembly board configurations: base setup (left), various tool arrange-
ments (center), and cable manipulation scenario (right). 30

4.1 System design illustrating the teaching, encoding, and reproducing phases for
trajectory learning and execution using invariant representations and Cartesian
impedance control. 36

5.1 Experimental setup showing the robotic arm system (left), camera view (top cen-
ter), and the assembly board system with cable manipulation configuration (right). 44

5.2 Top view of the board with the configuration and all the steps used for the Clip
Task. 45

5.3 Top view of the board with the configuration and all the steps used for the fist
part of the Complete Path based on the NIST Setup. 46

B.1 Complete ROS node graph used in the project. The graph illustrates the interac-
tions and data flow between perception, control, and communication nodes. . . . 59

65

LIST OF FIGURES

66

List of Tables

2.1 Comparison of learning-from-demonstration methods 11
2.2 Behavior Tree node types and their respective outcomes. 27

3.1 List of Materials and Components Used in Experiments 31
3.2 Technical Specifications of the Custom Board . 31
3.3 Technical Specifications of the Franka Emika Panda Robotic Arm 32
3.4 Technical Specifications of the Intel RealSense D435i Camera 33

4.1 Summary of System Requirements and Design Goals 37

67

LIST OF TABLES

68

	Introduction
	State of the Art
	Introduction
	Perception
	Definition and Importance
	Technologies and Methods
	Critique and Gaps

	Planning
	Definition and Importance
	Technologies and Methods
	Critique and Gaps

	Execution
	Definition and Importance
	Technologies and Methods
	Critique and Gaps

	Theoretical Foundations
	Introduction
	Perception
	Learning from Demonstration
	Feature Extraction
	Color and Shape Detection for Cable Connector Identification

	Planning
	Dynamic Movement Primitives (DMP)
	Bidirectional Invariant Representation
	Trajectory and Orientation Generalization

	Execution
	Behavior Trees

	Materials and Equipment
	Introduction
	Custom Assembly Board for Robotic Manipulation
	Inventory of Experimental Equipment and Materials

	Hardware Equipment
	Robotic Arm (Franka Emika Panda)
	Camera (Intel RealSense D435i)

	Software Tools
	ROS (Robot Operating System)
	Aruco Libraries
	Other Software Tools

	System Design and Development
	Introduction
	System Requirements and Design Goals
	Functional Requirements
	Design Goals
	Constraints

	Integration of Hardware Components
	Integration of the Robotic Arm and Sensors
	RealSense and Aruco Synchronization
	Custom Assembly Board and Object Manipulation
	Challenges in Hardware Integration

	Software Architecture and Communication
	ROS Node Management

	Experimental Method
	Introduction
	Experimental Setup
	Configuration of the Environment
	Test Scenarios

	Experimental Procedure
	Preparation Phase
	Trajectory Recording and Processing Phase
	Execution Phase
	Post-Experiment Analysis

	Results and Observations
	Validation of Individual Modules
	Framework Performance in Task Execution

	Conclusions
	3D-Printed Tools for the Custom Assembly Board
	ROS Node Graph
	Bibliography
	List of Figures
	List of Tables

