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Abstract—This study presents a simulation project aimed at
enhancing plant condition monitoring in precision agriculture
through the integration of Unmanned Aerial Vehicles (UAVs)
and Unmanned Ground Vehicles (UGVs). The primary objective
is the early detection of plant diseases using a distributed system
for data analysis and communication between UAVs and UGVs.
The UAV first conduct an aerial survey of the agricultural
field, gathering data which is later analyzed to identify areas of
interest. This data is then communicated to the UGVs, which are
subsequently deployed for more detailed ground-level inspection.
A hybrid sensing model, combining elements of depth sensing
and spatial scanning, is employed to accumulate 3D data over
time, constructing a detailed spatial representation of the field.
Furthermore, a Weighted Least Squares (WLS) algorithm is
utilized to manage the positional relationships among UGVs
and between UGVs and plants, ensuring precise navigation and
obstacle avoidance. An Extended Kalman Filter (EKF) improves
the accuracy of UAV tracking and navigation by integrating
GPS and IMU data. The simulation generates two-dimensional
heatmaps to visualize disease distribution, guiding ground ve-
hicles to the affected areas. The results demonstrate how the
integration of UAV and UGVs, combined with advanced data
analysis, can potentially revolutionize agricultural monitoring
practices, providing innovative solutions for sustainable crop
management and reducing losses due to plant diseases.

I. INTRODUCTION

OVER the last few years, precision agriculture has
emerged as one of the most significant innovations

in the agricultural sector, aiming to improve the efficiency,
productivity, and sustainability of farming practices. This
discipline leverages advanced technologies to monitor and
manage crops with precision, thereby minimizing resource
use and optimizing agricultural yield. Among the most trans-
formative technologies employed in precision agriculture are
Unmanned Aerial Vehicles (UAVs) and Unmanned Ground
Vehicles (UGVs), commonly known as drones, which have
demonstrated a wide range of applications in this field.

The adoption of drones in agriculture has seen exponential
growth in recent years, primarily due to their ability to
rapidly collect high-resolution data over large areas. UAVs
are utilized for various purposes, including land mapping,
crop health monitoring, irrigation management, the application
of pesticides and fertilizers, and assessing damage caused
by adverse weather events [1], [2], [3]. Their versatility and
efficiency in data collection make them indispensable tools for
modern farmers seeking to adopt more precise and informed
agricultural practices.

In particular, drones have proven effective in detecting plant
diseases, especially in crops such as grapes, citrus, and olives
[4]. Traditionally, drones gather multispectral, thermal, and
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visible images, which are processed using advanced algorithms
like Convolutional Neural Networks (CNNs) and Support
Vector Machines (SVMs) to identify symptoms of diseases
and support decision-making processes [4], [5]. However,
the standard camera model can be limiting in large-scale
field operations. To address these limitations, we adopt a
hybrid sensing approach, combining depth sensing and spatial
scanning to construct a detailed 3D map of the agricultural
field over time. This system accumulates spatial data as UAVs
and UGVs explore the field, enhancing disease detection
capabilities.

Despite the potential of these advanced sensing techniques,
integrating drones with other agricultural systems, such as
ground vehicles, remains a challenge due to the lack of stan-
dardized workflows and real-time data coordination [1], [3].
This highlights the need for more integrated and coordinated
approaches in precision agriculture, which is a central focus
of this work.

A crucial aspect of utilizing drones in precision agriculture
is the accuracy of the collected data and the ability to integrate
this information with other data sources to make informed
decisions. This is where advanced data analysis algorithms,
such as Weighted Least Squares (WLS) and Extended Kalman
Filter (EKF), become essential.

The WLS method is a statistical technique that manages
uncertainties in positioning and environmental data by assign-
ing different weights to observations based on their reliability.
This approach is particularly valuable in agricultural scenarios,
where data can be affected by noise or unpredictable varia-
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tions, thus improving the accuracy of analyses.
EKF, on the other hand, is an algorithm that extends the

traditional Kalman Filter to handle nonlinear systems. In drone
applications, EKF is employed to combine intermittent data
from GPS and Inertial Measurement Units (IMU), thereby
enhancing the accuracy of UAV tracking and navigation. This
capability is crucial for ensuring reliable drone operations even
in conditions of limited or interrupted GPS signals.

The integration of WLS and EKF in managing drones
for precision agriculture represents a significant advancement,
enabling farmers to obtain more accurate and actionable data
to optimize crop management. These advanced data analysis
tools are opening new possibilities for more efficient and sus-
tainable agricultural management, reducing operational costs,
and improving crop yields [2], [6].

The main objective of this work is to develop and simulate
a distributed system using UAVs and UGVs to improve plant
health monitoring in precision agriculture by detecting or not
detecting the presence of diseases. By combining advanced
data analysis techniques, such as WLS and EKF, with com-
munication between airborne and ground-based units, and
utilizing active sensing techniques to accumulate 3D data, this
project aims to improve early detection of plant diseases, thus
enabling timely and targeted interventions. The ultimate goal
is to demonstrate how this approach can lead to more efficient
and sustainable agricultural practices, reducing crop losses and
optimizing the use of resources by demonstrating how the
combined use of several agents with different characteristics
can improve the overall outcome.

This paper is organised as follows:
Section II: Distributed System Architecture outlines the

overall architecture of the proposed system, including the
integration and coordination between UAV and UGVs, as well
as the communication protocols used for data sharing and
decision making.

Section III: System Model provides a detailed description of
the system components, including the UAV and UGV models,
the hybrid depth sensing model for data acquisition, and the
modeling of plant health and disease spread.

Section IV: Proposed Solution outlines the control laws,
estimators (WLS and EKF) and algorithms used for data
analysis and decision making in the proposed system.

Section V: Implementation details the simulation environ-
ment, including the tools and methodologies used to imple-
ment the system, and discusses the challenges encountered
during the development process.

Section VI: Experimental Results presents numerical and
graphical results of the simulations, demonstrating the effec-
tiveness of the proposed system in detecting and responding
to plant health problems.

Section VII: Conclusions and Discussion summarises the
main findings of the study, discusses the advantages and
limitations of the proposed solution, and suggests potential
directions for future research.

A. Problem Statement
Precision agriculture has significantly advanced with the

adoption of UAV for tasks such as crop health monitoring,

land mapping, and disease detection. These technologies have
greatly enhanced the ability to gather high-resolution data over
large agricultural areas in a short period of time. However,
despite these advancements, challenges remain in creating a
fully integrated system that can efficiently coordinate aerial
and ground-based operations.

While UAV has proven effective in collecting critical data,
integrating this data with ground operations, such as those
performed by Unmanned Ground Vehicles (UGVs), remains
a complex and evolving area. Current systems often face
difficulties in integrating data in real-time and coordinating
decision-making between UAV and UGVs. For instance, the
lack of standardized workflows for combining aerial and
ground data can lead to inefficiencies in detecting plant
diseases and responding with timely interventions [1], [3].

Additionally, traditional camera-based systems can be lim-
ited in their ability to fully capture the complexities of the
field environment. Factors such as varying plant heights and
dense foliage can obstruct a clear view from above, leading to
incomplete or inaccurate data. To address these limitations,
a hybrid depth sensing and scanning approach is needed,
allowing the system to accumulate data over time and create a
comprehensive 3D representation of the field. This method can
help overcome the limitations of static imaging and provide a
more detailed ground-level assessment.

Moreover, accurately positioning UGVs relative to each
other and to the plants is critical for effective operation.
Challenges such as sensor noise, environmental variability, and
the need for precise navigation in dynamic field conditions
necessitate the use of advanced algorithms like Weighted Least
Squares (WLS) for accurate positioning and Extended Kalman
Filter (EKF) for improved UAV navigation and tracking. These
methods help mitigate uncertainties in the data, ensuring that
the system can make reliable decisions even under challenging
conditions.

In summary, there is a need for more robust and adaptable
systems that can efficiently integrate UAV and UGVs, utilizing
advanced algorithms like WLS and EKF to enhance data
accuracy and decision-making capabilities. These improve-
ments would contribute to more effective monitoring of plant
health, allowing for early detection of diseases and better-
informed interventions, ultimately leading to more sustainable
and productive agricultural practices [6].

II. DISTRIBUTED SYSTEM ARCHITECTURE

In this section, we present the overall architecture of the
proposed distributed system, which integrates UAV and UGVs
for enhanced plant health monitoring. We discuss the coor-
dination mechanisms between the aerial and ground units,
the communication protocols enabling data exchange, and
the decision-making processes that allow these platforms to
operate in a synchronized and efficient manner across large
agricultural fields.

A. UAV and UGV Integration

The integration of UAVs and UGVs is a key component
of the distributed system. UAVs fly over the agricultural field,



3

collecting environmental data using a hybrid depth sensing and
scanning model. This model accumulates 3D spatial data as
the UAVs move across the field, capturing detailed information
about the plants and their surroundings. The data is processed
to identify signs of plant disease or stress, and once the
inspection is complete, the UAV transmit the data to a central
base station for further analysis.

After the analysis, UGVs are deployed to the critical areas
identified by the UAV. Equipped with depth sensors similar
to those used by the UAV, UGVs autonomously navigate
the field, providing detailed ground-level inspections. Their
mission includes tasks such as targeted treatments or additional
data collection based on the areas identified as problematic
by the UAV. The combination of aerial and ground-level data
enhances the overall accuracy of the monitoring system.

B. Coordination and Communication

In the proposed system, coordination between UAV and
UGVs is managed asynchronously. The UAV first complete his
scanning and data collection missions, accumulating detailed
3D spatial data of the agricultural field. This data is then
analyzed at a central base station, where it is processed into
actionable insights, such as heatmaps that identify areas with
a higher probability of disease presence.

Following the analysis, these results are transmitted to the
UGVs, which begin their ground-level operations. The UGVs
use the processed data to navigate the field, performing tasks
such as targeted inspections and interventions based on the
UAVs’ findings. This approach allows for an efficient division
of labor: UAV provides a broad aerial overview, while UGVs
conduct more detailed, ground-level work.

Although this project does not focus on the technical details
of the communication protocols between UAV and UGVs, it
assumes the use of reliable wireless communication methods
to facilitate data transfer and coordination. This asynchronous
workflow ensures that the system operates efficiently without
the need for real-time data sharing, making it suitable for large-
scale agricultural monitoring.

C. Distributed Decision-Making

The decision-making process in the system begins with a
centralized approach during the initial analysis of data col-
lected by the UAV. Once the UAV completes its data collection
and analysis, the instructions are sent to the UGVs. From that
point onward, decision-making becomes decentralized. Each
UGV operates autonomously, utilizing its local sensors and
real-time environmental data to make decisions. This com-
bination of centralized planning and decentralized execution
leverages the strength of detailed, global analysis from the
UAV while allowing for the adaptability and responsiveness
of UGVs on the ground.

III. SYSTEM MODEL

This section details the mathematical and technical mod-
eling of the system components, encompassing the UAV and
UGV platforms, the hybrid depth sensor and scanning model,

Fig. 2. Cone of vision (UGVs case)

and the simulation of plant health and disease propagation
within the field. These models provide the foundation for
understanding how the system operates in the simulation
and how it achieves the objectives of enhanced plant health
monitoring and disease detection.

A. UAV and UGV Integration (Technical Description)

In this simulation, both UAV and UGVs are modeled
as autonomous agents operating on a unicycle model. The
unicycle model describes the vehicle’s motion with its state
defined by its position (x, y) and orientation θ. This model is
well-suited for capturing the dynamics of the UAV and UGVs
as they navigate the field.

The unicycle model is represented by the following state
equations:

xnext = xcurrent + v · cos(θ) · dt,
ynext = ycurrent + v · sin(θ) · dt,
θnext = θcurrent + ω · dt,

where v is the linear velocity, ω is the angular velocity, and
dt is the time step used in the simulation.

These equations are implemented in the function
unicicloModel, which updates the state based on control
inputs. Additionally, the function unicicloJacobian is
used to compute the Jacobian matrices necessary for further
state estimation processes.

B. Hybrid Depth Sensor Model

In this system, the UAV and UGVs are equipped with hybrid
depth sensors that capture 3D spatial data, surpassing the lim-
itations of traditional 2D imaging. These sensors accumulate
depth information over time, enabling the creation of a detailed
3D representation of the environment through active sensing
techniques. This approach combines depth perception, akin to
that provided by LIDAR or depth cameras, with visual data
to produce a more comprehensive model of the field.

The performance of these sensors is governed by several key
parameters, including the sensor’s height, depth resolution, and
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scanning angle. The detection radius r is calculated using an
equation similar to that used for a camera’s field of view:

r = h · tan
(

FoV
2

)
where h represents the sensor’s height, and FoV denotes the

field of view angle:

FoV = 2 · arctan
(
W

2f

)
Here, W is the sensor width and f is the focal length of

the camera. The corresponding field of view in degrees is
calculated as:

Field of View (degrees) = rad2deg (FoV)

The area covered by the sensor, which is influenced by the
detection radius, is given by:

Area = π · r2

Additionally, the depth of field (DoF) is computed to
determine the range within which objects appear sharp. This
is calculated using the following equations:

dfocus =
f2

N · C
+ f

where dfocus is the focus distance, N is the f-stop, and
C is the circle of confusion. The hyperfocal distance H is
calculated as:

H =
f2

N · C

The near and far limits of the depth of field are then given
by:

dmin =
dfocus · (H − f)

H + (dfocus − 2f)

dmax =
dfocus · (H − f)

H − (dfocus − 2f)

This hybrid depth sensor model allows the UAV and UGVs
to gather data that is then processed into actionable insights,
such as identifying areas with higher disease probability or
detecting anomalies in plant growth.

1) Camera Parameters: Table II summarizes the key pa-
rameters used in the hybrid depth sensor model for both UAV
and UGV systems. The values of the parameters are chosen
to reflect realistic camera specifications and field conditions,
ensuring accurate data collection and analysis.

(a) (b)

(c)

Fig. 3. Plant and Disease Modeling: By choosing parameters that describe the
field, the plants and the spread of the disease, a wide combination of results
can be obtained.

C. Plant and Disease Modeling

The plant and disease models simulate the growth of crops
and the progression of diseases within the field. These models
incorporate various factors, such as plant biology, environ-
mental conditions, and disease spread dynamics, to create
realistic scenarios, as you can see in Fig.3, for the system to
monitor. By modeling the health of individual plants and the
spread of diseases over time, the system can evaluate different
monitoring and intervention strategies.

The plant growth model represents the crops in the field,
with individual trees randomly placed within the predefined
area. Each tree consists of a number of leaves, with variations
in size and position to simulate natural variability. The growth
of the trees includes key parameters such as:

• Tree Canopy: The radius of the tree canopy and the
height of the trees are modeled to simulate the three-
dimensional structure of the plants.

• Leaf Distribution: Leaves are distributed around the
center of each tree, with variability in the number of
leaves per tree to reflect realistic growth patterns.

• Environmental Factors: Although not explicitly mod-
eled in the current simulation, environmental factors such
as light and water can influence future iterations of the
growth model.

The disease propagation model simulates how pathogens
spread between trees and leaves within the field. The process
begins with a few initially infected trees, and the disease then
spreads to nearby leaves and plants based on proximity and
specific conditions:

• Initial Infection: A small subset of trees is randomly
selected as initially infected. The leaves of these trees
are immediately marked as infected.

• Infection Spread: The disease spreads from infected
leaves to healthy leaves based on the distance between
them. The probability of infection is influenced by the
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relative height of the leaves, with a higher likelihood of
infection spreading downward. Infected leaves can spread
the disease within a defined radius, simulating realistic
contagion dynamics in the field.

• Probabilistic Infection: The likelihood of infection is
determined by factors such as proximity and height
difference. For example, the disease is more likely to
spread to lower leaves, while the spread to higher leaves
is less probable.

The system also includes parameters for visualizing and
tracking the spread of the disease. Healthy and infected
leaves are stored separately, allowing for further analysis and
intervention. This enables the UAV and UGV systems to detect
early signs of disease and adjust their strategies to prevent
widespread outbreaks.

IV. PROPOSED SOLUTION

In this section, we describe the control strategies, estimators,
and algorithms developed to enhance the performance of the
distributed UAV-UGV system. We specifically focus on the
application of Weighted Least Squares (WLS) for managing
positional uncertainties and the Extended Kalman Filter (EKF)
for improving the accuracy of UAV navigation. Additionally,
we discuss the image processing and decision-making algo-
rithms that enable the system to detect plant diseases early
and optimize intervention strategies.

A. Control Laws

The control laws govern the movement and behavior of both
the UAV and UGVs as they navigate through the agricultural
field.

a) UAV Control Laws: The UAV control laws manage
stable flight, waypoint navigation, and coverage optimization.
The function calcolaComandiControllo dynamically
adjusts the UAV’s angular gain and speed based on the
distance to the waypoint, ensuring that the UAV maintains
the appropriate altitude and velocity to capture high-quality
images. The control logic also incorporates constraints to avoid
excessive angular velocities, ensuring smooth flight operations.

The linear velocity v and angular velocity ω are calculated
using the following formulas:

v =

{
vmax · dwayp.

ddec.
, if dwayp. < ddec.

vmin + (vmax − vmin) · scale factor, otherwise

ω = clamp (Kp · error, ωmin, ωmax)
(1)

Here, dwayp. is the distance to the waypoint, and ddec. is the
distance at which deceleration begins. The angular gain Kp is
dynamically adjusted based on the distance to the waypoint,
providing a smooth and accurate approach.

b) UGV Control Laws: For UGVs, the control laws focus
on ground navigation and obstacle avoidance. The function
calcolaComandiControlloUGV computes the UGV’s
velocity and angular velocity based on the current state,
waypoint, and collision avoidance mechanisms. The UGV
control logic incorporates several layers of decision-making

to ensure safe navigation, including adjustments for proximity
to obstacles such as trees and other UGVs.

The control commands for UGVs are determined as follows:

v = vmin + (vmax − vmin) ·min

(
dwaypoint

dthreshold
, 1

)

ω = Kpangolo·errore angolo−
∑
i

(sign(angolo differenza) · ωmax)

The angular velocity ω is adjusted not only based
on the waypoint but also in response to nearby
obstacles, ensuring collision avoidance. The term∑

i (sign(angolo differenza) · ωmax) accounts for adjustments
needed to avoid collisions with other UGVs or trees, where
angolo differenza is the angular difference between the
UGV’s heading and the direction of the obstacle.

B. Estimators

Estimators are essential for handling uncertainties and im-
proving the accuracy of data collected by the UAV and UGVs.
Two key estimators used in this system are the Extended
Kalman Filter (EKF) and Weighted Least Squares (WLS).

1) EKF: The Extended Kalman Filter (EKF) is used pri-
marily for UAV state estimation, combining GPS and IMU
data to provide continuous and accurate estimates of the UAV’s
position and orientation. The function stimaEKF performs
the prediction and update steps of the EKF, utilizing the
UAV’s motion model and incorporating both process noise and
measurement noise covariances to refine the state estimates.

The EKF algorithm follows two main phases: prediction and
update.

Prediction Phase:

x̂k|k−1 = f(x̂k−1, uk)

Pk|k−1 = FkPk−1F
T
k +Q

Update Phase (GPS and IMU):
For the GPS:

KGPS = Pk|k−1H
T (HPk|k−1H

T +RGPS)
−1

x̂k = x̂k|k−1 +KGPS(zGPS −Hx̂k|k−1)

Pk = (I −KGPSH)Pk|k−1

For the IMU:

KIMU = PGPSH
T (HPGPSH

T +RIMU)
−1

x̂k = x̂GPS +KIMU(zIMU −Hx̂GPS)

Pk = (I −KIMUH)PGPS

These equations describe how the EKF combines data from
GPS and IMU sensors to estimate the UAV’s state.
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a) Integration of IMU Angular Velocity in the EKF:
In the UAV simulation, the Extended Kalman Filter (EKF)
has been enhanced by integrating the IMU’s angular velocity
(ωimu) directly into the system’s state model, rather than
using a direct orientation measurement (zimu) in the update
phase. This approach simplifies the process and improves the
robustness of the orientation estimate.

State Model and Prediction: Instead of a separate update
for the IMU, the angular velocity is used in the prediction
step:

θt+1 = θt + ωimu ·∆t

This modification streamlines the EKF by embedding the
IMU’s data directly into the motion model, eliminating the
need for an additional update step.

IMU Noise Covariance: The traditional IMU noise covari-
ance (Rimu) is incorporated into the process noise covariance
matrix (Q) rather than being used in a separate update step.
This adjustment reflects the overall uncertainty of the state
model:

Q = diag(qx, qy, σω)
2

This method improves the accuracy and stability of the
UAV’s state estimation, particularly in environments with high
noise levels.

2) WLS: WLS is employed by the UGVs to refine posi-
tion estimates based on shared data from other UGVs. The
function WLS aggregates position estimates from multiple
UGVs, weighting them according to the confidence in each
measurement.

The WLS estimator is defined as:

x̂WLS =

∑n
i=1 wixi∑n
i=1 wi

where:
• x̂WLS is the final weighted estimate,
• wi is the weight associated with the estimate xi.
This approach reduces the uncertainty in the UGV’s position

estimates and enables better coordination among the UGVs
by considering the reliability of the data collected from each
vehicle.

C. Algorithms for Image Processing

The image processing algorithms enable the UAV to detect
plant diseases using the hybrid depth sensors that collect both
visual and spatial data. Techniques such as image segmenta-
tion, feature extraction, and depth-based anomaly detection are
applied to identify patterns indicative of plant stress or disease.
Unlike a traditional pinhole camera model, the hybrid sensor
model accumulates 3D spatial information over time, allowing
for a more comprehensive analysis of the environment.

These sensors capture depth data that is used to create de-
tailed topographic maps of the field, which are then processed
to generate heatmaps. These heatmaps visually represent areas
with a higher probability of disease presence, guiding the
UGVs to the most critical locations for targeted interventions.
This approach enhances the precision of the disease detection

process by leveraging both visual and spatial information to
identify subtle changes in plant health.

D. Decision-Making Algorithms

The decision-making algorithms guide the actions of both
UAV and UGVs based on the hybrid sensor data collected
and processed. For the UAV, these algorithms determine the
next waypoints for further exploration based on the coverage
achieved and the areas identified as potentially problematic,
leveraging the 3D maps created from accumulated spatial data.

For UGVs, the decision-making process involves selecting
which areas to inspect or treat based on the 3D heatmaps
and spatial models generated by the UAV. These algorithms
prioritize locations with a higher probability of disease pres-
ence, optimizing the UGVs’ routes to minimize travel time
and energy consumption while ensuring thorough coverage
of the field. The hybrid sensor data allows UGVs to make
more informed decisions, considering both the visual and to-
pographical information in their path planning and intervention
strategies.

V. IMPLEMENTATION

This section details the implementation of the proposed
system within a simulation environment. We describe the tools
and software used, the integration of the UAV and UGV
models, and the process of simulating the unsynchronized
communication and data processing within the distributed
system. Additionally, pseudocode is provided to illustrate the
core algorithms implemented in the simulation, offering a
clearer understanding of the system’s functionality.

A. Simulation Environment

The simulation environment serves as a virtual testbed
where the UAV and UGV systems, along with various algo-
rithms and estimators, are modeled and evaluated. MATLAB
is used as the primary and unique platform for the simulation,
providing tools for modeling dynamic systems, processing
spatial and visual data, and visualizing the results.

The UAV and UGVs are equipped with hybrid depth sensors
that collect spatial data over time, enabling the generation
of detailed 3D maps of the agricultural field. The simulation
environment includes a representation of the field, where trees
and plants are randomly positioned, and the spread of disease
is simulated to create realistic scenarios. These hybrid sensors
accumulate data from multiple positions, allowing for the
creation of a comprehensive map that guides the ground-level
operations of the UGVs.

The environment also supports 3D visualization, enabling
the monitoring of UAV and UGV performance as they ex-
plore the field and respond to detected issues. The ability to
visualize both spatial and visual data in real time enhances the
understanding of the system’s effectiveness in managing plant
health and disease detection.
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B. System Integration
The integration of UAV and UGV systems within the

simulation environment is crucial to the overall functionality
of the project. This involves combining the individual models,
algorithms, and hybrid depth sensors into a cohesive system
capable of autonomously operating in a coordinated manner.

The hybrid depth sensors integrated into the UAVs and
UGVs play a pivotal role in improving the quality of data
collected during the simulation. These sensors allow the UAVs
to capture both visual and spatial data, which is then processed
into detailed 3D maps of the field. The data collected by the
UAVs is communicated to the UGVs, guiding them to the crit-
ical areas identified by the aerial scans. The UGVs, equipped
with the WLS estimator, refine their position estimates based
on this spatial data, ensuring precise navigation and obstacle
avoidance.

The following pseudocode outlines the process of integrat-
ing the EKF, WLS, and hybrid camera models within the
simulation environment.

1) Extended Kalman Filter (EKF) Integration: The EKF is
crucial for UAV state estimation, combining GPS and IMU
data to provide accurate estimates of the UAV’s position and
orientation. The pseudocode Algorithm 1 illustrates the EKF
implementation:

Algorithm 1 EKF Update
1: Input: Current state estimate xest, Covariance matrix P ,

Control input u, GPS measurement zgps, IMU measure-
ment ωimu

2: Output: Updated state estimate xest updated, Updated
covariance matrix Pupdated

3: Predict the next state using the Unicycle Model:
4: upred = [u(1);ωimu]
5: xpred = UnicycleModel(xest, upred, dt)
6: [F,G] = UnicycleJacobian(xest, upred, dt)
7: Ppred = F · P · FT +G ·Q ·G′

8: GPS Update Phase:
9: Hgps = [1 0 0; 0 1 0]

10: ygps = zgps −Hgps · xpred

11: Sgps = Hgps · Ppred ·HT
gps +Rgps

12: Kgps = Ppred ·HT
gps/Sgps

13: xest updated = xpred +Kgps · ygps
14: Pupdated = (I −Kgps ·Hgps) · Ppred

15: Ensure orientation angle is within [−π, π]
16: Return xest updated, Pupdated

2) Weighted Least Squares (WLS) Integration: The WLS
algorithm is employed by the UGVs to refine their position
estimates based on shared data from other UGVs. The pseu-
docode Algorithm 2 outlines the WLS estimation process:

3) Camera Data Processing Integration: The hybrid cam-
era system collects 3D spatial data, which is processed to
create detailed maps of the agricultural field. The pseudocode
Algorithm 3 outlines the camera data processing:

C. Challenges and Solutions
During the implementation of the simulation, several chal-

lenges were encountered, particularly related to the integration

Algorithm 2 WLS Estimation
1: Input: Position estimates from UGVs ugv positions,

Weights ugv weights, Shared data condivisi dati
2: Output: Updated position estimates

ugv estimated positions
3: for each UGV i do
4: aggregated estimate = ugv weights[i] ·

ugv positions[i]
5: total weight = ugv weights[i]
6: for each other UGV j ̸= i do
7: aggregated estimate+ =

condivisi dati[j].weight · condivisi dati[j].position
8: total weight+ = condivisi dati[j].weight
9: end for

10: ugv estimated positions[i] =
aggregated estimate/total weight

11: end for
12: Return ugv estimated positions

Algorithm 3 CameraDataProcessing
1: Input: Camera parameters (height, focal length, sensor

width, etc.), Position of UAV/UGV
2: Output: 3D maps of the field, Depth and visual data
3: Calculate Field of View (FoV) and detection radius:
4: θ = 2 · atan(W/(2 · f))
5: raggio rilevazione = height · tan(θ/2)
6: Calculate Depth of Field (DoF) based on camera param-

eters:
7: d focus = (f2)/(N · C) + f
8: H = (f2)/(N · C)
9: d min = (d focus ·(H−f))/(H+(d focus−2 ·f))

10: d max = (d focus ·(H−f))/(H−(d focus−2 ·f))
11: Generate 3D map:
12: for each position (x, y) in the field do
13: Capture depth data and visual data
14: Update 3D map with new data
15: end for
16: Return 3D maps, Depth data, Visual data

of spatial data from the hybrid depth sensors and the overall
system coordination.

a) Handling Spatial Data from Hybrid Sensors: One
of the main challenges was efficiently processing the spatial
data collected by the hybrid sensors, particularly in ensuring
that the heatmaps generated were accurate and actionable for
UGV operations. This involved refining the methods used to
integrate and interpret the data collected over time by the
UAV and UGV systems, ensuring that the resulting maps
were detailed and precise enough to guide ground operations
effectively.

b) Handling Sensor Noise and Data Uncertainty: An-
other challenge involved managing the uncertainties and noise
in the sensor data, particularly for UAV navigation and UGV
ground operations. The use of the EKF for UAV state esti-
mation and WLS for UGV position refinement was crucial
in addressing these issues. These methods allowed the system
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to maintain accurate tracking and positioning even when the
sensor data was imperfect, ensuring reliable operation under
varying conditions.

c) Obstacle Avoidance and Collision Prevention: In the
UGV operations, ensuring that the vehicles could navigate
the field without colliding with trees or other UGVs was a
key challenge. This was managed by implementing advanced
control algorithms that incorporated real-time sensor data to
adjust the UGV’s path and avoid obstacles while still moving
toward the target locations. Additionally, determining appro-
priate parameters, such as the minimum distance to be kept
from trees, required careful consideration of environmental
characteristics, including the density and size of trees in the
field.

d) Heatmap Accuracy: Generating accurate heatmaps
based on the hybrid sensor data was another challenge. The
data collected from the aerial perspective had to be processed
and translated into actionable information for the UGVs,
considering both the visual and spatial aspects. Refining the
image processing algorithms and adjusting the parameters of
the hybrid sensors helped improve the resolution and accuracy
of the disease detection process, leading to more precise UGV
interventions.

VI. EXPERIMENTAL RESULTS

In this section, we present and analyze the results of the
simulations conducted to evaluate the performance of the
proposed system. We provide both numerical and graphical
data to demonstrate the system’s effectiveness in detecting
plant diseases, its accuracy in UAV navigation, and the overall
impact on agricultural management. The results are discussed
in the context of their implications for real-world applications
and future improvements.

A. Simulation Setup

The simulations were conducted in a controlled virtual
environment, with specific parameters consistent across all
scenarios. These include the size of the agricultural field,
the number of trees, and the UAV and UGV characteristics.
However, certain variables were adjusted across simulations
to assess the system’s robustness under different conditions.
The primary variables modified include sensor noise levels
and camera parameters. The performance of the system was
evaluated based on metrics such as disease detection accuracy,
navigation precision, and operational efficiency.

From the table I, we can see the parameters used in the
simulation setup.

B. Simulation 1: Baseline

The baseline simulation was performed under standard
conditions, with default sensor settings and minimal noise
interference. The results of this simulation serve as a reference
for evaluating the impact of altered conditions in subsequent
simulations. Key performance indicators, such as the accuracy
of disease detection and the stability of UAV navigation, were
recorded and analyzed.

The results obtained from the simulation are plotted and
shown in the following Figures: 4,5, 6, 7 and 8. It is possible to
observe the route travelled by the drones and their trajectories,
the heatmaps, the IDs of the trees, the submaps required for the
UGVs and the list and location of the various trees searched
by the UAV using an ID.

(a) (b)

Fig. 4. UAV and UGV perlustration of the field

C. Simulation 2: Increased Sensor Noise

In this simulation, the noise levels in the UAV and UGV
sensors were significantly increased to evaluate the system’s
robustness under high uncertainty conditions. Specifically, the
parameters related to sensor noise, such as the sigma values
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TABLE I
SIMULATION SETUP PARAMETERS

Parameter Value Description
Field Size 200 m x 200 m Dimensions of the agricultural field
Total Area 40,000 m2 Total area of the field
Number of Trees 80 Number of trees randomly distributed in the field
UAV Flight Height 7 m Altitude at which the UAV operates
UAV Minimum Speed 4 m/s Minimum linear velocity of the UAV
UAV Maximum Speed 10 m/s Maximum linear velocity of the UAV
UAV Angular Velocity 0.5 - 1 rad/s Range of angular velocity for the UAV
UGV Camera Height 1 m Height of the camera on the UGV
UGV Minimum Speed 1 m/s Minimum linear velocity of the UGV
UGV Maximum Speed 7 m/s Maximum linear velocity of the UGV
Tree Canopy Radius 5 m Radius of the tree canopy
Max Tree Height 3 m Maximum height of the trees in the field
Initial Infected Trees 4 Number of trees initially infected with the disease
Disease Spread Radius 20 m Radius within which the disease can spread from an infected tree
Percentage of Field to Explore 30% Proportion of the field that the UAV must cover during the exploration phase

(a) (b)

(c)

Fig. 5. Heatmaps generated by the simulation

for GPS, IMU, and camera uncertainties, were augmented.
The goal was to observe how this increased noise affects the
system’s performance, particularly in terms of UAV stability,
UGV navigation accuracy, and the reliability of disease detec-
tion. Please, take a look at Table III.

During the simulation, the effects of heightened sensor noise
were closely monitored, including potential delays in response,
miscalculations in positioning, and overall system stability.
By comparing these results with the baseline simulation, we
were able to quantify the performance degradation and identify
the critical points where the system’s functionality started to
decline due to excessive noise.

The results are showed in the Fig. 9

D. Simulation 3: Extreme Sensor Uncertainty

In the third simulation, we further escalated the sensor
uncertainty parameters to extreme levels to test the system’s
breaking points, as you can see from Table IV. This involved
not only increasing the noise levels but also modifying the
uncertainty factors related to the UAV’s and UGV’s field

Fig. 6. Perlustrated field from UAV

Fig. 7. ID of the trees

of view and detection capabilities. The aim was to assess
how extreme levels of uncertainty would impact the system’s
ability to function effectively, particularly in detecting plants,
navigating the field, and avoiding obstacles.
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Fig. 8. Real and estimated trajectory of the UAV

(a) (b)

(c)

Fig. 9.

As a result of these extreme conditions, significant alter-
ations in the UAV’s and UGV’s vision cones were observed.
The UAV’s vision cone became significantly narrower, while
the UGV’s expanded beyond its normal range, leading to
challenges in accurately detecting leaves and maintaining a
consistent path. In some cases, the UAV or UGV failed to
identify crucial waypoints or targets, which highlighted the
limitations of the system when operating under excessively
uncertain conditions. This simulation emphasized the impor-
tance of optimizing sensor parameters to maintain a balance
between robustness and precision, avoiding scenarios where
the system’s effectiveness is severely compromised.

The results are showed in the Fig. 10

VII. CONCLUSION

This study effectively implemented and simulated a dis-
tributed UAV-UGV system designed for precision agriculture.
Through various simulation scenarios, the system’s perfor-

(a) (b)

(c)

Fig. 10.

mance was evaluated in areas such as UAV navigation accu-
racy, UGV obstacle avoidance, and plant disease detection.
A key finding was the significant impact of sensor uncer-
tainties on system functionality. As uncertainty parameters
like sigma values and other factors increased, there were
noticeable changes in the cones of vision for both UAV and
UGVs—narrowing for UAV and widening for UGVs. This
adaptability allowed the system to maintain reliability under
different uncertainty conditions.

However, when uncertainty parameters were excessively
increased, the system’s performance began to degrade. The
cones of vision became so distorted that crucial environmental
details, such as leaves or waypoint markers, were missed. In
extreme cases, this led to the UAV or UGV failing to detect key
targets, compromising their monitoring and intervention capa-
bilities. This trade-off emphasizes the importance of carefully
tuning sensor uncertainty parameters to balance robustness and
accuracy. While the system shows strong adaptability, it is
crucial to optimize the management of sensor uncertainties to
prevent significant performance degradation.

The findings suggest that, while the proposed system holds
considerable promise for enhancing precision agriculture, fur-
ther refinements are needed, particularly in the calibration
of sensor uncertainties, to ensure effective operation across
diverse environmental conditions.
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[3] M. Herrero-Huerta, J. A. Jiménez-Berni, S. Sun, I. Herrmann, and
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TABLE II
CAMERA PARAMETERS FOR UAV AND UGV SYSTEMS

Parameter Value Description
UAV Height (altezza uav) 7 m UAV flight altitude
Focal Length (f uav) 0.012 m Camera focal length for UAV
Sensor Width (W uav) 0.036 m Camera sensor width for UAV
f-stop (N) 4 Aperture (f-stop) of the camera
Circle of Confusion (C) 0.03 m Acceptable circle of confusion
Field of View (FoV) 114.6° Field of view angle of the camera
Minimum Focus Distance (d min) Calculated Nearest point in focus (depends on focal length, aperture, and focus distance)
Maximum Focus Distance (d max) Calculated Furthest point in focus (depends on focal length, aperture, and focus distance)

TABLE III
COMPARISON OF PARAMETERS FOR SIMULATION 2

Parameter Initial Value (UAV) New Value (Simulation 2, UAV) Initial Value (UGV) New Value (Simulation 2, UGV)
Sigma for UAV Height (σ altezza) 0.1 0.3 N/A N/A
Sigma for Focal Length (σ f ) 0.001 0.003 N/A N/A
Sigma for Sensor Width (σ W ) 0.001 0.003 N/A N/A
Uncertainty Factor for Distance (fattore distanza) 0.03 0.06 0.1 0.3
Uncertainty Factor for Visibility (fattore visibilita) 1.0 1.5 1.5 2
Uncertainty Factor for Height (fattore altezza) 0.03 0.06 0.05 0.1
Occlusion Radius (raggio oscuramento) 8 m 8 m 8 m 8 m

TABLE IV
COMPARISON OF PARAMETERS FOR SIMULATION 3

Parameter Initial Value (UAV) New Value (Simulation 3, UAV) Initial Value (UGV) New Value (Simulation 3, UGV)
Sigma for UAV Height (σ altezza) 0.3 0.8 N/A N/A
Sigma for Focal Length (σ f ) 0.003 0.008 N/A N/A
Sigma for Sensor Width (σ W ) 0.003 0.008 N/A N/A
Uncertainty Factor for Distance (fattore distanza) 0.06 0.2 0.3 0.9
Uncertainty Factor for Visibility (fattore visibilita) 1.5 2.5 2 3
Uncertainty Factor for Height (fattore altezza) 0.06 0.15 0.1 0.5
Occlusion Radius (raggio oscuramento) 8 m 8 m 8 m 8 m


